SEL-71-007

Nj‘_. DO

NS Ce-1117¢
Parallel Implementation of a

Single Assignment Language

by
D. D. Chamberlin

January 1971

Technical Report No. 13

Reproduction in whole or in part is permitted

for any purpose of the United States Government.
This document has been approved for public
release and sale; its distribution is unlimited,

This work was supported in part by

the Joint Services Electronics Program

U.S. Army, U.S. Navy, and U.S. Air Force
under contract N-00014-67~A-0112-0044
and by the National Aeronautics and Space
Administration under Grant 05-020-337.

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICLS LABORATORIES

STANFORD BNIVERSITY - STANFORD, CRLIFORNMIN

SEL-71-007

PARALLEL IMPLEMENTATION OF A SINGLE ASSIGNMENT LANGUAGE

by

D. D. Chamberlin

January 1971

Technical Report no. 13

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories
Stanford University

Stanford, California

This work was supported in part by the Joint Services Electronics
Program U.S. Army, U.S. Navy, and U.S. Air Force under contract
N-00014-67-A-0112-004k and by the National Aeronautics and Space
Administration under Grant 05-020-337.

PARALLEL IMPLEMENTATION

OF A SINGLE-ASSIGNMENT LANGUAGE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON THE GRADUATE DIVISTION
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE‘DEGREE OF

DOCTOR OF PHILOSOPHY

By
Donald Dean Chamberlin

January 1971

ii

ABSTRACT

This thesis describes a high~level computer programming
language, called SAYPLE, and a parallel processing systen
to implement the language. SANMPLE belongs to the class of
single—-assignment languages, which have the property that
statements are not necessarily executed in théir order of
appearance in the program; rather, each statement is
triggered by the readiness of the data on which it depends.
Because of this property, single-assignment languages are
well adapted for parallel processing.

Rules are given for compiling SAMPLE programs into
machine~level instructions, and a machine organization 1is
described to execute the resulting code. During execution
of a program, many processors are active simultaneously;
each with its own independent instruction strzamn,
Expandability and graceful degradation are intrinsic
properties of the system organization.

Some experiments are described which simulate the
behavior of the proposed system and compare it with a
conventional, single-processor systen. It is concluded
that the proposed system offeﬁs a speed advantage over a
conventional system, at the expense of increased processor

costs and memory reguirements.

- iii -

ACKNOWLEDGEMENTS

I wish to thank my major adviser, Professor E. J.
HcCluskey, for his constant support and guidance in the work
reported here. Thanks are also due to Professots A. M.
Peterson and L. A. Manning for their help in preparing the
document., |

I owe a special debt of gratitude to Professors W. H.
McKeeman, of the University of California at Santa Cruz, and
H., S. Stone of Stanford University, whose generous flow of
ideas provided much of the direction of my work, and to my
wife, dJudy, whose help and eancouragement made it all
possible,

This work was conducted under the support of a National
Science Foundation Graduate Fellowship, with additional
support provided by the Joint Services Electronics Progranm,
and by National Aeronautics and Space Administration Grant
No. NGR-05~020-337, Editing and preparation of the text was
done using WYLBUR, the terminal-based text-editing service

of the Stanford Computation Center.

miv-

Abstract

TABLE OF CONTENTS

- ® L] » - '] L s e L] - * L] L d

Acknowledgements . o« « o o o s s & =

List of Tables L J o L - - ® L4 - L d L] ®

List of FigUIres .« o o « o o o = o »

I.

II.

INTRODUCTION

THE

Definition of the Problem .
Historical Approaches . . .
A New Approach + « o s o o
LANGUAGE

Introduction . « « o « o o &

Exanple of Single-Assigament

Data Types L J - -® [] - - * - Q'

Assignment Statements . . &
EXpressions . « o o« o o o =
Conditional Expressions . .
WITH EXpPresSsions « « « o« o
Input and Output Statements
Block Structure . o « « ¢ »
Functions ¢ o« o o o o o o
Tterationl o o o o o ¢ o o o
LOOPS & o o o s o o 2 s o o

Special Values « o+ o o o o

Page
iii
iv
viii

ix

12
13
16
18
18
19
21
22
25
26

31

comments o o o ¢ o o

Operator Precedence

¥

List of Reserved WHords .

.

L3

BNF Description of SAMPLE Syntax

Programming Exanmples . .

IXI. THE SYSTEHN
Organization . . o
The Text Storage Unit
The MemOryY « o « o »
The Instruction Store
The Ready List « « &
Iv. COMNPILATION
The Scanner .« . « e
The Parser « « « s« »
Exanple o o o o o «
V. EXECUTION

PLroCeSSOLS o o » o »

The Basic Instruction Routine

The Readiness Routine

The Instruction Generate

Example o o2 o » o =

VI, EVALUATION AND CONCLUSIONS

Simulation Experiments .

Conclusions + = o o

L2

-

Routine

Suggestions for Continued Research

-vi-

32
32
33
34

39

48
51
52
56

60

62
66

68

72
73
75
77

79

84
92

93

APPENDIX A
: SAMPLE SemanticCsS o o o o o o o o o o o &
APPENDIX B |
Descriptions of Machine Instructions . o
APPENDIX C
IBM S/360 Matrix Multiplication Program
APPENDIX D
SAMPLE Hatrix Multiplication Program . .

List Of References o« « o o a s © s o o » o o s o

- vii -

107

137

162

164

165

6.7
6.8

LIST OF TABLES

Behavior of IBH System/360 Program

Behavior of SAMPLE Progran

Frequency of Usage of
Active Processors vs.

SANPLE System .
SAMPLE Execution Time
SAMPLE Execution Tine

Processor . s o
SAMPLE Execution Tinme
SAMPLE Execution Time

Store Banks .+ »

Storage Commands

Time, Unlimited

VS,

VS.

VS»

VS,

L] L

- viii -

Processors

Ports Per

Memory Banks

Instruction

®

°

8

o

2

*

*®

Page
95
96

99

101

103

104

105

106

LIST OF FIGURES

Sequential Dependencies in Example Program
Example Program After Compilation
Example Program After Expansion
Example Program After Execution is
Complete .« o o o o o o o o s s o o =
Execution Time Comparison, 360 vs. SAMPLE
Storage Usage Comparison, 360 vs. SAMPLE .
Usage of Storage Commands (by type) . . .
Active Processors vs. Time, Unlimited
SAMPLE System « o o 2 o o 5 ¢ o o s o
SAMPLE Execution Time vsS. Processors « « .
SAMPLE Exccution Time vs. Ports Per
PrOCESSOL ¢ s ¢ o ¢ s o o o o o 5 s o
SAMPLE Execution Time vs. Memory Banks . .
SAMPLE Execution Time vs. Instruction

Store BanksS o o © o o # ¢ o s o o o

_ix-

Page
"
71

82

83
97
98

100

102

103

104

105

106

CHAPTER ONE

INTRODUCTION

DEFINITION OF THE PROBLEH

This thesis describes a means of organizing a digital
computer system for parallel proéessing. For our purposes,
parallel processing is defined as the simultaneous use of
more than one processing wunit in processing a computer
program. Depending on the details of its organization,
a parallél computing system may have any of the following
advantages: .

1. Its net speed in processing a given program may be

faster than that of a systen with only one
processor.

2., Its organization may be more flexible than that of

a single-processor systenm. For example, more
processors, and hence more computing power, may be
added without <changing the basic organization of
the systen.

3. In the event of a failure, other components may be

able to take over the function of the failed
component, resulting in a "graceful degradation”

of performance.

4. The duplication of identical parts may afford sone
economies of scale in construction of the systenm.
This thesis will describe a system organization capable of
realizing all of the above advantages.
| In order to focus the computing power of mnultiple
processors on a single program, some means must be found of
breaking up the program into units of work, 2and assigning
the units of work to the processors. Ideally, all ths2
processors would be active at all times without mutual
interference. 1In practice, the parallelism achiasvable 1in
processing any given algorithm is limited by the nature of
the algorithm. Any well-defined algorithm can be thoughnt
of as a collection of units of work, with certain
sequential dependencies among the wunits of work which
define'the order in which the units nust be completed, in
order to arrive at the correct result. If the algorithm
contains within it some set of units of work, none of which
depends in any way on the completion of the others, it nmay
be possible for - these units of work to be executed
simultaneously on parallel processors. The fundamental
problem of parallel ©processing is the discovery of the
sequential dependencies among the units of work im a given
algorithm, and the allocation of processors to those units

of work which can proceed in parallel.

HISTORICAL APPROACHES

The problem of parallel processing has been approached
in a number of different ways. One way ih which various’
approaches can be distinguished is the *"level" at which one
attempts to discover parallelism. Some workers have
conceived the basic unit of work as a large portion of a
program, such as a block or procedure. This has 1led to
such language facilities as the multitasking feature of
PL/I {24}, in which more than one '"task", each containing
many statements, may be simultaneously active, but no
attempt is made to find parallelism within a task. On a
somevhat lower 1level, the Dbasic unit of work nmight be
considered a single statement in a high-level language.
Thus, high—lgvel language £facilities have been proposéd
wvhich permit creation of parallel flows of control amonyg
the statements of a program, such as Anderson?s. FORK and
JOIN statements (3) and Opler®s DO TOGETHER statement (31).
On a still lover level, one mnmnight seek parallel wunits of
work within a single expression. For exanmple, in
evaluating the expression (A+B)*(C+D), the two additions
could be treated as parallel processes. Hellerman (20)
and Stone (34), among others, have proposed algorithms for
scanning such expressions and locating parallel work units.

Another way of distinguishing among approaches to
parallel processing is by conéidering the machine on which

the processing is to be done. Some machines, such as

o~

SOLOMON (33} and ILLIAC IV (5), hafe a single instruction
stream shared among many processors, all of which are
constrained to execute the same instruction at the sanme
time. Others, such as the cDC 7600 (12), contain multiple
processors which are capable of acting independently and
asynchronously. Still others, such as the IBM System 360
flodel 91 {2), have a single instruction stream but
introduce parallelism 4into its processing by means of
lookahead and pipelining. A few radical, cellular
organizations have been proposed, such as the Holland
Machine {21) oqr Crane and Githens® Distributed Logic
Yemory {14); in these organizations, both computational and
memory functions are distributed throughout an array of
identical cells.

A third distinguishing feature among methods of
parallel processing is the means by which sequential
dependencies are discovered im the algorithnm to be
processed. One school of thought holds that the progranmer
should explicitly identify the units of work and their
sequential dependencies; this has led, for example, to the
FORK and JOIN statements and to the PL/I multitasking
features described above. another school of thought holds
that a program in a conventional language should be
analyzed automatically by the system in order to discover
potential parallelism; work has been done on such analysis
of Algol at the Burroughs Corpération (7) , and similar work

has been done on the FORTRAN language at UCLA (4). Other

workers have proposed entirely ﬂew languages for the
expression of parallel algorithms, such as APL (26) .

A fourth characteristic of parallel processing studies
is their orientation toward theory or toward
inmplementation. Some of the approaches described above,
such as ILLIAC IV, have been intended as practical systens,
and have actually been inplemented. Other workers, such
as Adams (1) or Karp and HMiller ({27), have proposed more
abstract models of parallel processing, and have been able
to construct theoretical proofs that their models possess

certain properties, such as universality and determinacy.
A NEW APPROACH

In a paper presented at the 1968 Spring Joint Computét
Conference {(35), Larry Tesler and Horace Enea proposed a
new class of programming languages called Single-Assignment
Languages. In a single-assignment language, statements do
not necessarily execute in the order in whcih they appear
in a program; rather, each statement executes as soon as
all the variables it needs are defined. 1In order that each
statement be triggered at a well-defined time, it is
required that each variable be assigned a value only once
during the execution of a program. In a single-assignment
program, there is no "flow of control®™ in the conventional
sense; rather, tAe seguencing~ of statements 1is determined

by the data flow, as some statements assign values to

variables which are needed by otﬁer statements. Single~
assignment languages are well-adapted to parallel
processing because, if many statements sinultaneously have
all their needed variables defined, they nmay all be
executed in parallel. |

This thesis describes a high-level single-assignment

programming language, called SAMPLE, based on some of the
ideas of Tesler and Enea. #ith respect to the four
distinguishing characteristics described under ‘"Historical
Approaches®, the present work might be categorized as
followus:

1. The basic unit of work will be sought on as 1low 13
level as possible, even within a statement in the
language, The decision to seek low~level
parallelism was made 1in order to exploit evefy
possibility for parallel processing, with the
realjzation that this approach would probably be
expensive in terms of the system overhead necessary
to discover the potential parallelisn.

2. The processing is to be done on a machine having
many independent, asynchronous processors. Since
the system consists of a variable number of
processors, with no central control unit, it
automatically possesses the properties of
expandability and graceful degradation,

3. The programmer need ~hot explicitly state the

oppartunities for parallelism in his algorithm;

they will be automatically discovered by the
system. A programming language will be described
having a structure such that the opportunities for
parallel processing can readily be uncovered by the‘
systen.

The work described here is implementation-oriented.
Several examples will be givén of programs in the
proposed language. Rules will be stated for
compilation of the 1language into .machine-level
instructions, and a detailed description will be
given of a hardware system, able to be built with
presently-available components, to execute» the
resulting object progran. Some results ;f a

simulation cf the proposed system will be described.

CHAPTER TWO

THE LANGUAGE

INTRODUCTION

Single—assignment languages, as defined by Tesler (35),
are languages which reguire that each variable be assigneil a
value only once in a program. Each statement in a single-
assignment language has certain input variables (on whose
value the statement depends} and certain output variables
{wvhose values are defined by the statement). As soon as all
the input variables of a given statement are defined, that
statemént may be executed with assurance that none of its
input values will ever change. Thus the order of execution
of statements in a single-assignment language 1is implicitly
determined by the data flow of the program, and the physical
ordering of the statements is immaterial. Single-assignaent
languages are well—-adapted to parallel processing because,
at any point in time, a simple algorithm can determine the
set of statements which are ready for execution.

Single Assignment Mathematical Programming Language,
SAMPLE, has been developed for implementation on a parallel
processing systenm. SAMPLE is intended for numeric

programs having a high degree of implicit parallelism. It

provides a full range of arithmetic and logical operators,
arrays, block structure, recursive procedures, conditional
expressions, and iteration. It does not provide facilities
for handling character strings or linked 1lists; however,
these facilities could be added without altering the basic

nature of the langquage.
EXAMPLE OF SINGLE-ASSIGNMENT PROCESSING

Before proceeding with a detailed description of the
features of SAMPLE, an example will be given of the concept
of single~assignment processing. Suppose that we are given
tvo numbers A and B, and we wish to £ind wﬁich is greater,
(A+B) /{(A-B) or (A*B)/(A-B) . We might write the following

progran:

BEGIN
W ¢ A-B;
X € (A+B) /N;
Y €& (A%*B)/u;
Z &« X>Y;

END

At the conclusion of processing, the variable 2 would
contain a Boolean value of TRUE if (A+B) / (A-B) is
greater than (A*B)/(A-B); otherwise it would contain the

value FALSE.

- 10 -

We will now examine this program from the point of view
of the single~assignment property. We notice that there
are six operations to be performed. If we invent the names
T1 and T2 for certain intermediate results, we could write

the six operations as follows:

{(1) W &« a-B

{(2) T1 < A+B
(3) X & Ti/¥
{4) T2 <« A*B
(5) Y & T2/¥

(6) 2 <« X>Y

Each operation has two inputs and one output. He will make
the fo;lowing assumptions:

4. Each operation requires one time-unit to complate,

B. Each operation is initiated as soon as its inputs
are ready. If many operations are simultaneously
ready, they proceed in parallel.

C. When we start processing, A and B are ready.
Then the sequence of events in processing the program 1is as
follows:

1. In the first time-unit, operations 1, 2, and 4 have
their inputs ready, so they are executed in
parallel. This makes their respective outputs,
We T1, and T2, ready.

2. In the second time unit, operations 3 and 5

Readiness of A and B

T1 €& As3B H & A-B T2 €& A*%B
X € Ti/W Y & T2/W
‘\ /
Z & X>Y

FIGURE 2.1

SEQUENTIAL DEPENDENCIES IN EXAMPLE PROGRAM

- 12 =

execute, making ready their outputs, X Aand Y.

3., In the ¢third time=-unit, operation 6 executes,

making ready the final result, Z.
This sequence of events, showing the sequential
dependencies among the six operations, is illustrated in
Figure 2.1,

The example we have considered is a wvalid SAMPLE
program, and the above steps reflect the way in which our
proposed system might process the progran. This same
exanple vill‘be considered in more detail 1in the chapters

on Compilation and Execution.
DATA TYPES

SAMPLE has two data types: numbers and tuples. No
distinction is made between integers and real numbers.
Either a number or a tuple may be given a name, which
consists of any string of alphabetic or numeric
characters, the first of which nust be a letter.

A constant number may be written in either integer or
floating point form, with or without an explicit exponent,
Exanples: 2 -3.5 2.69E-8 -1E6

A tuple is an ordered set of elements, each of which nmay
be a number or a tuple; thus multi-dimensional arrays may be
tuples of tuples. Tuples are dgnoted'by angle brackets, for
exanple: <1, 2.5, X#Y> or <£1, 2>, <3, u>> . The reserved

words TO and BY nay be used in writing tuples:

- 13 -

<A TO B BY D> means <A, A+D, A+2D, ... , B>

<A TO B> means <A, A+1, A%+2, ... , B>

An individual element of a tuple may be referred to by
means of the subscript operator J « A} I is the name of
element I of tuple A. Tuple elements are usually numbered
starting with 0; however, this rule can be superceded, as
will be explained later, The built-in function FIRST A
returns the subscript number of the first _elément of the
tuple A; LAST A returns the subscript number of the last
element of A. Successive occurrences of § are grouped from
left to right unless modified by parentheses, so A'¢ I 3 J

neans {A ¥ I) 4 J rather than A $ (1 $ J) .
ASSIGNMENT STATENENTS

The assignment operator is the 1left arrow <« The
value of the expression appearing on the right of the arrow
is assigned to the variable or tuple element appearing on
the left of the arrow. Ekample: X €« Y ; assigns to X the
value of Y.

Befaore values can be assigned to the elements of a
tuple, upper and lower bounds wnust be defined £for the
subscripts of the tuple, in order that memory space may be
allocated for its elements. Two methods are provided for
defining these bounds; the 'programmer may use whichever

method he finds most convenient. The first method is by

- 14 -

means of "bounding" statements, using the reserved ‘word IS.
The following sequence of statements states that X is a
tuple having subscripts from -10 to 10, X § I is a tuple
having subscripts from 0 to N, and X § I ¢ J is assigned

the value of &4 +# B :

X IS TUPLE {-~10,10) ;
X ¢ I IS TUPLE {0,N) ;

X ¢ IV J <€« A +B

The second method of defining bounds for subscripts is
by means of the reserved word OF, which may be inserted in

an assignment statement. For exanmple,
X ¢ 5 OF {0,10) & U;

states that the tuple X has subscripts ranging from 0 to 10
and that X J 5 is assigned the value of U. If the lower

subscript bound is 0, it may be omitted; so
Xy 5 OF 10 & U;

has the same meaning as the above statement. If a name on
the left side of an assignment statement has multiple
subscripts, each subscript must have its own OF clause.
Thus, the following statement has meaning equivalent to the

three-statemaent example in the last paragraph:

- 15 -

X% I OF (-10,10) ¢ J of N €« A + B;

The two methods of defining tuple bounds nust never be
mixed in a statement. 1If a tuple has a special "bounding"
statement, then any tuples nested inside it must also have
"bounding" statements, and no OF clause may appear in any
statement which assigns values to the elements of these

tuples. Conversely, if a statement assigning a tuple
element has an OF clause, then: |

a. The tuple must not have a "bounding" statement.

b. All statements which assign values to elements of

the tuple must have OF clauses, and all the bounds

‘'stated in the OF clauses must agree. This enables

wvhichever statement nay execute first to define the

bounds of the tuple and allocate space for it,

c. All tuples nested inside the given tuple must have

their bounds defined by means of OF clauses.

A subscript or subscript bound wmay be any expression,

However, the programmer must ensure that his program does

not violate the single assignment property. For exanple,

if Ay J and A ¢ K appear on the 1left side of two

‘assignment statements, J and K must not evaluate to the

same number.

EXPRESSIONS

Four categories of arithmetic and logical operators are
provided for constructing expressions. The operators may be
mixed in any desired way. The precedence among the operators
is given imn a later section, and may be modified at will by
the use of parentheses.

Boolean operators {AND, OR, NOT) interpret any
negative input as TRUE and any non-negative input as FALSE.
They store the wvalue TRUE as -1 and FARLSE as 0. The
reserved words TRUE and FALSE may be used to represent =1

and 0, respectively.

Category I. Binary operators: + - * / MOD AND oR
If both operands are numbers, the result is a number.

If one operand is a number and the other is a tuple, the
operation is performed between the number and each
element of the tuple, and the result 1is a tuple. If
both operands are tuples, the operation 1is performei
element-by~element, and the result is a tuple.

X MOD Y is defined as the difference between X and

the largest multiple of Y not greater than X. None of

) 4 Yo nor X MOD) 4 need be an integer.

- 17 =~

Category II. Number unary operators: - ROUND FLOOR CEIL
ABS NOT
- Arithmetic negation
ROUND The nearest integer to the operand (.5 rounds up)
FLOOR The largest integer not greater than the operand
CEIL The snmallest integer not less than the operand
ABS Absolute value
NOT Logical negation
If the operand is a nunmnber, the result is a number.
If the operand is a tuple, the operation is performed on

each element of the tuple. The result is a tuple.

Category III. Tuple unary operators:s + * AND OR
The operand must be a tuple. The result is a numbér
created by joining all elements of the operand tuple
together by the corresponding binary operator. For

exanple, + <1,2,3> = 6 .

Category IV. Relational operators: = -~= <K <K= > »>=

These operators yield the value -1 or 0 1if the
relation is true or false, respectively. 1If one operand
is a number and the other is a tuple, ~= is TRUE and all
other relations are FALSE. If both operands are tuples,
and the operator is not -~=, the relation is TRUE only if
the tuples have identical ?first"'and #last" values, and
the relation holds between each pair of corresponling
elements in the tuples. The relation ~= is TRUE between

two tuples whenever the relation = |is not TRUE.

- 18 -

i~

The relational operators may be used anywhere in an
expression., TFor example, A €& X > Y+Z 3 assigns the
value TRUE (~-1) to A if X is greater than Y+Z, and FALSE

{0) otherwise,
CONDITIONAL EXPRESSTONS
Conditional expressions have the following form:
IF ¥ THEN Y ELSE 2

where X, Y, and Z may be any expressions (except those
containing the reserved word WITH). Conditional
expressions may be nested, and they may be used wherever an

expression may be used.
WITH EXPRESSIONS

It is often necessary to change an element of a tuple
wvhile preserving the other elements. This woull violate the
single—assignment property unless the altered tuple wvere
given a new name. The special expression A WITH I < U |is
equal to the tuple A with element I replaced by the value of
U, This type of expression may be used wherever an
expression is called for, and nmay be nested as required.
Example:

B « A WITH IF X=Y THEN I ELSE J « U ;

INPUT AND OUTPUT STATEMENTS

The order of execution of statements in a SAMPLE progranm
is unpredictable. Therefore we cannot use the conventional
scheme of providing the input medium with an ordered set of
input quantities, which the program will call for in order
as they are needed. Instead, all input gquantities must be
simultaneously available, and each input statement must be
able to call from the input medium the particular input
quantity it needs. We assume that the input medium is
associative; each input quantity may be a number or a tuple
(possibly having other tuples nested inside it), and each
input quantity is associated with a unigue in%teger. The
basic SAMPLE input statement, READ, specifies the variable
to be read, and the integer tag associated with it in the
1/0 medihm. The READ statement causes the input medium to
be scanned for the input gquantity associated with the given
integer tag; this quantity is then assigned to the given
variable. The variable to be read may be either a simple
name or a tuple element. If it is a tuple elenment, either
of the two methods of defining subscript bounds may be
used. The following example assigns to X the quantity

associated with the number 1 in the input mediums
READ (X,1);

0f course, since the input statements execute in an

unpredictable order, the numbers associated with the input

- 20 .-

quantities do not imply any ordering among them. The
programmer may specify several input guantities in a single
statement by repeating the parenthesized poﬁtion of the

statement. Exanmnples:

READ {2, 1), (B.2}, (C.3):
READ (A | J, N), {A ¢ K, N + 1);

READ (A ¢ I OF {1,10) 4 J OF 2, 10 * I + J);

The SAHPLE output statement, WRITE, operates
analogously to the READ statenent. There is assumed to
exist an associative output medium into which output
quantities may be placed and associated with unique
integers. Any expression may appear as the quantity to be
output in a WRITE statenment. The first of the three
examples below causes the value of X to be placed in the

output nediun and associated with the number 12

WRITE (X,1);
WRITE (A 4 J, N), (A ¢ K, N ¢ 1);

WRITE (A ¥4 J * By K + C, 2 ¥ J ¢+ K);

The associative input and output media mijht be discs
or drums. A special I/0 processor might be provided to
convert information from the 1I/0 media to a format more
convenient for external use. Neither of these 1ideas 1is

without precedent. The associative search for an input

- 21 -

quantity is similar to the "search key" commands Aimplemented
on IBH 2314 disc drives. (22) The 1idea of a special 1I/0
processor to interface a parallel system with the external
vorld is reminiscent of the ILLIAC IV project, which uses a

Burroughs: B6500 as an I/0 processor, (5)

BLOCK STRUCTURE

In order that a programmer may write a section of cod2
for insertion into a program without fear of duplicating a
variable or function name used in the outer programr, block
structure is provided in the SAMPLE 1language. A block is
any sequence of statements enclosed between the words BEGIY
and END and beginning with a declaration of all variable or
function names to be used in the block with a local meaning,
Blocks may be nested inside each other to arbitrary depth.
If any name declared in an inner block duplicates a nane
declared in an outer block, it behaves throughout the inner
block as though it were a different name, unrelated to the
duplicate name appearing in the outer block. Statements in
an inner block may refer to global names--names declared in
an outer block but not in the inner block. Every name used
in a block must be declared in that block or an outer block.
The outermost block is the program itself, which nmust be
enclosed between BEGIN and END and followed by a period (.).

A funbtipn name must be declared in the block in which

the function is defined. Details of function declarations

- FD -

will be explained in the section entitled "FﬁNCTIONS".

Block structure in SAMPLE is intended only to ensure
uniqueness of names. It does not, as in some languages,
irply memory allocation upon block entry. Because SAMPLE
statements are not executed in the order in which they are
Written, "block entry" has no meaning in SAMPLE. The data
type of a name is not specified in a declaration. The
following example program contains one nested block; it

reads two quantities and writes their sum:

BEGIN
DECLARE A, B, C:
READ (A,1), (B,2);
C & A + B;
BEGIN
DECLARE A;
A« C;
WRITE (A,1):
END

END.
FUNCTIONS

A SAMPLE function behaves like an ALGOL procedure, with
the restrictions that all its parameters must be called by
value, and it must always return a single value and have no

side effects. Each function is defined in the following way:

- 23 -

DEFINE <name> (<name 1list>) ; <function body> END

The <name list> is a list of the formal parameters of the

function; i.e,, those 1input quantities which nust be
supplied by the calling program each time the function is
called. The <function bod§> consists . of an optional
declaration of variable names which are local to the
function, zero or more statements to conmnpute the value of
the function, and, finally, an expression equal to the
value of the furnction. The following are two equivalent
definitions of a function which returns the arithmetic nean

of its two parameters:
DEFINE MEAN(X,Y): {X+Y) /2 END

DEFINE MEAW(X,Y);
DECLARE W, Z;
W €& X+#Y;
Z &« H/2;
Z

END

A function has many of the properties of a block. It
may declare 1local names, and its parameter names are
implicitly considered to be . declared as 1local names by
appearance in the parameter 1list. Function definitions

must always occur in the head of a block, just after the

- 2 -

declaration for that block. A function name may duplicate
another function name defined in another block; the nane
will then refer to different Ffunctions in the different
blocks. Statements inside a function definition may refer
to global names; i.e., names which are not declared 1in the
function. However, a statement inside a function may not
assign a value to a global nanme. The single-assignment
property must be obeyed inside function definitions. A
function defjinition may contain any type of statement except
another function definition.

A function name must be declared in the block in which
it is defined. The function names which are defined in a
block are simply inserted in the declaration for that block,
following the reserved word FUNCTION. 4 function - call
consists of the function name followed by a 1list Sf
parameters in parentheses, and may be used in any
expression. The number of actual parameters in a function
call must egqual the number of dummy parameters in the
function definition. A function may call itself
recursively.

In the following example block, functions SQUARE and
MEANSQR are defined and used to find the mean of the squares

of tvo numbers:

BEGIN
DECLARE A, B, C, FUNCTION MEANSQR, SQUARE;
DEFINE MEANSQR (X, Y);
{SQUARE(X) ¢ SQUARE(Y)) / 2
END
DEFINE SQUARE{W); W * ¥ END
READ (A,1), (B,2):
C < MEANSQR(A,B);

WRITE (C,1);

ITERATION

Iteration is denoted by using, anywhere in a statement,
a name-egclosed in single quote marks., This indicates that
the gquoted variable is a tuple, and that the statement is to
be executed once with each element of the tuple substituted
for the quoted nanme. Only a name, and not an entirsz
expression, may be guoted. If the same quoted name appears
more than once in a statement, all copies of the quoted nanme
are replaced by the same tuple element in each iteration.
If many different quoted names appear in a statement, the
statement will be repeated once for every possible different
way of substituting a tuple element for each quoted name,.
The following example assigns to A the transpose of an N x N

matrix B:

I & <1 TO N>

J & <1 TO N>;

A IS TUPLE({1,N);

A 3'I'IS TUPLE(1,N):

A \L UI' \L FJ¥F - B \b !JI & 'I';

The appearance of an iterated statement in a program has
exactly the same effect as the appearance of a different
statement for each iteration. The order of execution of the
iterations is determined by the readiness of their
respective input values. If many of the iterations are

ready at the same time, they may be executed simultaneously.

LOOPS

The above convention of iteration by guoted tuple nanmes
is intended to give the programnmer maximum possible
parallelism, in the sense that each iteration is released
for execution as soon as all its input variables are ready.
This implies that some system resources (at least some
memory space) must be allocated to each 1iteration of the
statement at all times, until it has been executed,
However, in some processes it is known in advance that the
{(I+1)th iteration depends on the results of the Ith
iteration, and so it would be foolish to allocate systenm

resources to all the iterations at once, Furthermore, som2

- 27 -

algorithms, such as iteration until a conéition is
satisfied, are difficult or impossible to program using the
quoted tuple convention. Therefore, two additional
constructs have beeﬁ provided: the FOR loop and the WHILE
loop. The feormats are as follows, where <expr> represents

any expression not containing the reserved word WITH:

FOR <name> <~ <expr> STEP <expr> UNTIL <expr> DO

<initialization>
<loop body>

Pl R Y
e B, N

END

WHILE <expr> DO

<initialization>
<loop body>

S W -t~

END

Loops obey the following rules:

1. The loop body is a set of =statements or nested
loops. The entire loop body is executed repeatediy,
and each iteration is not begun until the previous
iteration has finished. The FOR 1loop executes its
body once for every indicated value of its index
variable. The WHILE loop continues iterating as
long as its condiﬁion,is satisfied.

2. The 1loop body must obey the sinyle-assignment

property, both within itself and with respect to the

3.

5.

- 28 -~

external progranm. The order of execution of
statements inside the loop is governed by their data
dependencies.

For each variable which is defined in the 1loop, at
any point in time, tvo values are retained: the
value computed in the present iteration, ani the
value computed in the previous iteration. The term
OLD X refers to the value of X computed in the
previous iteration. The operator OLD may be used in
any eﬁpression inside a loop; however, 1its operand
must be a variable defined in the 1loop or in an
outer loop {not in an inner loop).

During the first iteration of the loop, the OLD
values of the variables are defined by the
initialization. Every variable appearing with, the
operator OLD must also appear in the initialization.
The following example shows the format of an

initialization:
INITIAL A & 1, B €& X .} I, C &« <0 TO H>;

The index variable of a FOR loop must be declared,
like any other variable in the progran.,
The continuation condition of a WHILE loop may not
contain any OLD references, nor any variables
defined in the loop but not initialized. When a

WHILE loop is executed, variables appearing in the

7.

- 29 -

initialization are set to their INITIAL vélues. The
continuation condition is then tested; if it fails,
no iterations occur, and the variables retain their

INITIAL values. If the continuation condition
succeeds, the initial values of the variables becone
the OLD values, and the first iteration procezds.
After each iteration, the newly computed values are
used to determine whether another iteration should
ocCcur,

Global variables (defined outside the loop) may bhe

used within the loop. These variables have the sanme

" value in every iteration.

If a statement outside a loop uses as an input
quantity a variable defined in the loop, that
statement must wait until all iterations of the loop
are complete. Then, when the index variable has
been exhausted or the continuation condition has
failed, all variables defined in the 1loop are
considered to be ready, and their values are the
values computed in the last 1loop iteration. Note
that this implies "levels" of readiness; a variable
defined in a loop may be "ready" to other statements
in its loop, because it has been defined for a
particular iteration, but "not ready" to statements
outside the loop, because all iterations are not yet

complete.

- 30 -

9. The two types of loops may be nested inside each
other without restriction up to eight 1levels of
nesting. Before any iteration of an outer loop is
considered complete, all iterations of all inner
loops must be complete.

10. Statements iterated by the gquoted tuple name
convention may appear in a loop body.
11. No statement outside a FOR loop may use the index
variable of the 1loop as an input variable.

12, The STEP clause of a FOR loop may be omitted, in
which case the step is taken to be T

13, No function definition may occur inside a loop;
hovever, a 1loop may occur inside a function
definition, and a function call may occur inside a

loop.
The following example of a loop <computes N factorial:

FOR I <« 1 UNTIL N DO
INITIAL X <« 1;
X € OLD X * I;

END

To illustrate nested loops, we might nest the above
loop inside another loop. The program below computes N,

the smallest integer whose factorial is greater than 100:

WHILE FACT<100 DO

INITIAL N €& 1, FACT &« 1;

N € OLD N + 1;

FACT &« X;

FOR I & 1 UNTIL N DO
INITIAL X & 1;
X « OLD X * I;

END

END
SPECIAL VALUES

The programmer may use the special value NIL in
expressions. NIL is the status of a name before its value
is assigned. Any expression centaining the word NIL will
never become ready, and assigning such an expression to a
name is the same as no assignment. Therefore, a given nane
may appear on the left side of several assignment
statements without violating the single-assignment
property, provided that at most one of the values assigned
to the name is not NIL. The following example assigns to X
the subscript number of the element in the tuple A& which is

equal to Q (A nmust contain only one such elenment):

I € <FIRST A TO LAST A>;

X €« IF Ay 'I* = Q THEN 'I' ELSE NIL;

The special value UNDEFINED results when an operation

which is syntactically correct has no nmeaning, such as

- 32 -

Xy 2 vhen X is a number. Any operation having one or nore

operands UNDEFINED yields an UNDEFINED result.

CCMMENTS

A comment may occur at any place in a program. Any text
beginning with the reserved word COMMENT and ending with a

semicolon {;) is considered to be a comment, and is ignored,

OPERATOR -PRECEDENCE

Operators in higher classes are executed first., Within
classes, operators are executed from left to right as they

occur in the progran,

function calls OLD
¥ YessOF

FIRST LAST ROUND FLOOR CEIL ABS + #% AND OR (unary)
% / HMOD

¢+ = (binary)

= {unary)

= A= > = L <K=
NOT

AND

OR

HITHe o o €&
IFesTHEN.. - ELSE

€=

BEGIR
END
READ
YRITE
NIL
TUPLE
DECLARE
FUNCTION

DEFINE

LIST OF RESERVED WORDS

IF

THEN

ELSE

HITH

OF

FIRST

LAST

TO

BY

33 -

AND
OR
NOT
MO0D
ROUND
FLOOR
CEIL
ABS

COMMENT

FOR
STEP
UNTIL
WHILE
DO
INITIAL
OLD
TRUE

FALSE

- 34 -

BNF DESCRIPTION OF SAMPLE SYNTAX

Note: The convention that all text enclosed between
COMMENT and ; is ignored is not included in this

description.

<program> ::= <block> .
<block> ::= BEGIN <block head> <statement list> E¥D
<block head> ::= <declaration>

{ <block head> <function defn>
<declaration> ::= DECLARE <name list> ;

| DECLARE <name list> , FUNCTION <name list> ;
<function defn> ::= DEFINE <name> { <name list> } ;
<function body> END
| DEFINE <name> ; <function body> END

<name list> z2:= <name>

<name list> , <name>

<function body> ::= <{declaration> <statement list> <expr>
]v<statement list> <expr>
i <expr>
<statement list> ::= <statement>
] <statement list> <{statement>
<statement> 2:= <block>
} <loop>
| READ <read list} :
| WRITE <write list> ;
| <left part> IS TUPLE (<num expr>,<num expr>) 3

| <left part> € <expr> ;

- 35 -

<read list> ::= <read aton>

i <read list> , <read atom>

<read atom> z:= (<left part> , <num expr>)

<write list> z22= <vrite atonm>

] <vwrite list> , <write atom>

<write atom> ::= (<expr> , <num expr>)

<left part> z2:= <nanme>
] <bounded left part>

} <unbounded left partd>

<bounded left part> ::= <name> <subscript> OF <nunm expr>

| <name> <subscript> OF (<num expr>

s <nUmM expr>)

{ <bounded left part> <subscript>

OF <num expr>

| <bounded left part> <subscript> OF

(<num expr> , <num expr>)

<unbounded left part> ::= <leader> <subscript>

<leader> ::= <nane>

] <leader> <subscript>

<loop> z:= FOR <name> < <num expr> STEP <num expr> UNTIL

<npum expr> DO <init> ;

{statement list> END

} FOR <name> <« <num expr> UNTIL <num expr> DO

<init> ; <statement list> END

| WHILE <num expr> DO <init>
<init> 2= INITIAL <init atom>
{ <init> , <init atom>

<init atom> ::= <name> € <expr>

<{statement list> END

-36'—

<expr> ::= <num expr>

i <expr> WITH <num expr> < <num expr>

i

<nul expr>

44

:= <logical expr>
§ IF <num expr> THEN <num expr> ELSE <num expr>
<logical expr> ::= <logical term>
{ <logical expr> OR <logical term>
<logical term> ::= <logical factor)>
} <logical term> AND <logical factor>
<logical factor> ::= <relation>
41 NOT <relation>
<relation> ::= <arith expr>
| <arith expr> = <arith expr>
} <arith expr> -= <arith expr>
j <arith expr> < <arith expr>
| <arith expr> <= <arith expr>
| <arith expr> > <arith expr>
i <arith expr> >= <arith expr>
<arith expr> z2:= <term>
] = <term>
| <arith expr> ¢ <term>
{ <arith expr> - <term>
<term> ::= <factor>
| <term> * <factor>
i <term> / <factor>

] <term> MOD <factor> .

{factor>

)
.
i

- 37 -

{quantity>

FIRST <quantity>

LAST <quantity>

ROUND <quantity>
FLOOR <quantity>
CEIL <quantity>
ABS <quantity>

+ {gquantity>

* <{quantity>

.AND <{gquantity>
OR <quantity>
<number>

<unlabelled tuple>

<quantity> 2:= <primary>

] <tuple element>

<primary> :z:= <nane>

i
i

* <name> '

OLD <name>
<function call>
{ <expr>)

NTIL

TRUE

FALSE

<function call> z2:= <name> (<simple tuple>)

<tuple element> ::= <primary> <subscript>

<subscript>

| <tuple element> <subscript>
:= | <primary>

i ¢ <number>

&0

<unlabelled tuple>

2= £ g

- 38 =

inple tuple> >

] € <tuple specifier> >

| <>
<{simple tupled> ::= <expr>
] <simple
<tuple specifier> ::= <nunm
] <num
<name> s:= <letter>
| <name> <letter>

| <name> <digit>

tuple> , <expr>
expr> TO <num exprc>

expr> TO <num expr> BY <num expr>

<number> ::= <unsigned number>

I <sign> <unsigned number>

<unsigned number> ::= <real>

} <real> <exponent>

|} <exponent>

<real> z:= <integer>
] <integer> .,

i - <integer>

| <integer> . <integer>

<exponent> s:3= E <integer>

§ E <sign> <integer>

<integer> ::= <digit>

{ <integer> <digit>

<letter> ::= A | B C} - . « | X i Y| 2

<digit> z:= 11 2 3 | 4} 5161718191 0

FROGRAMHING EXAMNPLES

1. Matrix Multiplication Program

This program reads matrices A and B and writes theirl
prdduct C. Input matrices A and B may be of any size and
shape, provided that the number of columns of A is equal to
the number of rows of B. Both input and output matrices
are assumed to be represented as nested tuples, with one
interior tuple representing each row., Rows and columns are
assumed to begin with the subscript 1.

The program computes each product element C 4 I ¢ J as
the sum over K of the partial products
A3 I VK *BYy KJYJ. The execution of the program might
proceed as follows:

1. The input matrices A and B are read.

2. The following guantities are computed:

L = the number of rows of A.

M = the number of columns of A, which must
equal the number of rows of B.

N = the number of columns of B.

3. The tuples I, J, and K are assigned to serve as
vafiables of iteration.

4, In a single statement, all the nmultiplication
operations are performed and the results are storeid
in a triply-nested tuple T« If A and B are both
square, N x N mafrices, this single statement

causes N cubed multiplications to occur

BEGI

END.

N

- 40 -

sinultaneously (subject to the 1limitations of the
hardvare on which the problen is runj .
Each product element C ¢ I { J is computed as the
sun of the elements of the tuple Ty I ¢ J, which
represents summation over the variable K. A siagle
statement causes this summation to occur for every
element C vy I 4 J simultaneously, completely
defining the product matrix C.

The result C 1is written 3into the output medium,

DECLABE A' B' C' I' J' 'K' ,L’ \ﬂ;’ N' T;

READ (A,1), (B,2);

L

K

<« LAST A&;

€ LAST (B ¢ 1);

€ IF LAST B = LAST (A J 1) THEN LAST B ELSE NIL;
€<« <1 TO 1>;

€« <1 TO M>;

e« <1 TO N>;

Ty 'I' OF (1,L) & 'J' OF {1,M) ¥ "K' OF (1,N) &

a¢!1'¢1K|*B&'KI¢'J':

CJy *I' OF {(1,L) J 'J* OF (1,H) &« + T ¢ 'I'" J 'J';

WRITE (C,3):

- 41 -

2. Matrix Reduction by Gaussian Elimination

The matrix A is reduced to upper diagonal form by row
operations. Rows and columns are assumed to begin with-
subscript 1. At every step, rows are shuffled so that the
row wiﬁh'largest coefficient is used as the pivotal row. A

may be a matrix of any size and shape.

BEGIN
DECLARE A, B, ¢, D, I, J, K, L, M, COLUMN, PIVNO, PIVOT,
FACTOR, FUNCTION MAXNO;
DEFINE MAXNO(U);
COMMENT: RETdRNS THE SUBSCRIPT NUMBER OF THE ELEMENT OF
U HAVING GREATEST ABSOLUTE VALUE;
DECLARE IU, V;
FOR IU € FIRST U UNTIL LAST U DO
INITIAL V € FIRST U;
V €« IF ABS{U ¢ {(OLD V)) > ABS(U ¢ IU)
THEN OLD V ELSE IU;

END

END

READ (A, 1);
L < LAST A;
FOR I < 1 UNTIL L - 1 DO
CCHMMENT: ONCE FOR EACH ROW EXCEPT THE LAST;
INITIAL D € A;
J € <1 TO I>;
K €~ <I+1 TO L>;
M €& <I TO L>;
COMMENT: ISOLATE THE ITH COLUNN;
COLUMN J ®*M® OF (I,L) € OLD D § 'M' | I;
COMMENT: FIND THE PIVOTAL ROW;
PIVNO €~ MAXNO (COLUMN);
PIVOT €~ COLUHMN ¢ PIVNO;
CCMMENT: INTERCHANGE PIVOTAL ROW WITH ITH ROW;
B € OLD D WITH I € OLD D J PIVNO;
C ¢ B WITH PIVNO < OLD D J I;
COMMENT: DIVIDE EACH ROW BY THE APPROPRIATE FACTOR;
FACTOR § "K' OF (I#1,L) & C ¥ "K' ¢ I / PIVOT;
D IS TUPLE(1,L);
D& 'J' €& C Y "J%;
Dy "K' &« C ¢ "K* - CJ I * FACTOR Y *K*;
END
WRITE (D,2):

END.

- 43 -

3. Universal Turing Machine Simulaior
This program reads a tuple of S-tuples which define the
Turing Machine to be simulated. Each S-~-tuple is a rule .
representing a combination of current state, current symbol,
next state, next symbol, and movement along the tape. The
program also reads the initial tape, state, and position of
the machine. It then simulates the machine, stopping when
the current state and letter do not match any 5-tuple. The
tape is allowed to grow without bound; squares to the right
and left of the initially defined tape are assured to
contain all zeros. After each Turing Machine cycle, the
cycle number, state, position, and complete tape are sent to
the output medium. This is not a good parallel program, but
it shovws the universality of the language.
BEGIN
DECLARE RULES, INITTAPE, INITSTAT, INITJ, TAPE, STATE,
COMMAND, LETTER, I, J, K, FUNCTION CATLEFT, CATRIGHT;
DEFINE CATLEFT(TL, CL);
COMMENT: RETURNS THE TUPLE TL, WITH THE ADDITIONAL
ELEMENT CL CONCATENATED AT THE BEGINNING OF THE
TUPLE (USED WHEN THE TAPE GROWS TO THE LEFT) ;
DECLARE IL, QL;
IL € <FIRST TL TO LAST TL>;
QL IS TUPLE{(FIRST TL - 1, LAST TL);
QL 4 'IL' & TL g 'ILY;
QL ¢ (FIRBRST TL - 1) < CL;
QL

END

DEFINE CATRIGHT (TR, CR);
COMMENT: RETURNS THE TUPLE TR, WITH THE ADDITIONAL
ELEMENT CR CONCATENATED AT THE END OF THE
TUPLE (USED WHEN THE TAPE GROWS TO THE RIGHT):
'DECLARE IR, QR;
IR ¢ <FPIRST TR TO LAST TR>;
QR IS TUPLE (FIRST TR, LAST TR + 1);
QR § 'IR' &« TR J 'IR';
QR & (LAST TR + 1) < CR;
OR
END
READ (RULES, 1), (INITTAPE,2), (INITSTAT,3), (INITJ,4);
COMMENT:
RULES IS A TUPLE OF S5-TUPLES WHICH GOVERN THE
BEHAVIOR OF THE MACHINE.
INITTAPE IS A TUPLE REPRESENTING THE INITIAL TAPE.
INITSTATE IS A NUMBER REPRESENTING THE INITIAL
STATE OF THE MACHINE.
INITI IS A NUMBER REPRESENTING THE INITIAL LOCATION
OF THE MACHINE (AS A SUBSCRIPT INTO INITTAPE);
K € <0 TO LAST TUPLES>;
WHILE TRUE DO
INITIAL TAPE € INITTAPE,
STATE € INITSTAT,
J & INITJ,
LETTER € INITTAPE INITJ,

I & 0;

- 45 -

I & OLD I + 1;
COMMENT: FIND THE S5-TUPLE WHICH MATCHES THE CURRENT
SITUATION;
CCMMAND < IF RULES 4 'K' § 0 = OLD STATE
AND RULES § 'K* ¢ 1 = OLD LETTER
THEN RULES ¢ 'K' ELSE NIL;
COMMENT: CHANGE STATE AND POSITION, AND WRITE ON TAPE;
- STATE € COMMAND § 23
J €& OLD J + COMHAND ¢ 43
TAPE ¢« IF J > LAST OLD TAPE THEN
CATRIGHT (OLD TAPE WITH OLD J € CONMAND { 3, 0)
ELSE IF J < FIRST OLD TAPE THEN
CATLEFT (OLD TAPE WITH OLD J & COMMAND ¢ 3, 0)
ELSE OLD TAPE WITH OLD J € COMMAND § 3;
LETTER € TAPE § J;
CCMMENT: PRINT THE RESULTS OF THIS CYCLE;
WRITE (I,u%*I-3), {(STATE,4*I-2), (J,4*I-1), {(TAPE,U%I);
END

END.

o U -

4. Sort Program Using "Divide and Conquec™
This progran sorts a tuple recursively by splitting it
into two parts, sorting each part, and merging the results.
It was written to illustrate the recursive properties of the
language.
BEGIHN
DECLARE U, V, FUNCTION SORT, MERGE;
DEFINE SORT (X) ;
COMMENT: IF X HAS 1 ELEMENT, RETURN IT.
IF X HAS 2 ELEMENTS, SORT THEM AND RETURN THEH.
IF X HAS 3 OR MORE ELEMENTS, BREAK IT IN HALF,
CALL SORT FOR EACH HALF, AND CALL MERGE
FOR THE RESULTS:
DECLARE H, M, N, W, Y, Zj
Wy OOF 1 & IF Xy 0< X 1 THEN X 4 0 ELSE X § 1;
Wy 1 0P 1 ¢« IF X § 0 C< X4 7 THEN X ¢ 1 ELSE X § O3
H €& CEIL(LAST X/2);
H € <0 TO H-1>;
H €« <H TO LAST X>;
YJ *HY OF (H-1) &« X ¢ 'H°;
Z J {(*N'-H) OF {(LAST X-H) & X } 'N?;
COMMENT: THE FOLLOWING EXPRESSION IS THE VALUE TO BE
‘RETURNED;
IP LAST ¥ = 0 THEN X
ELSE IF LAST X = 1 THEN W
ELSE MERGE {SORT(Y), SORT(Z2))

END

- 47 -

DEFINE MERGE(A,B);
COMMENT: TUPLES A AND B ARE EACH IN NUHERIC ORDER.
MERGE THEM INTO A SINGLE TUPLE, ALSO IN
NUMERIC ORDER;
DECLARE I, J, K, C;
FOR K < O UNTIL (LAST & # LAST B + 1) DO
INITIAL I & O0;
INITIAL J € O0;
I & IF A Y (OLD I) < B (OLD J)
THEN OLD I + 1 ELSE OLD I;
J €« IF A4 ¢ (OLD I) >= B ¢ (OLD J)
THEN OLD J ¢ 1 ELSE OLD J;
Cy K OF LAST A + LAST B + 1 &
IF A ¢ (OLD I) < B ¢ (OLD J) THEN A ¢ (OLD I)
ELSE B ¢ (OLD J);
END
c
END
READ (U, 1);
V €& SORT{U);
WRITE {(V,2);

END.

- U4 -

CHAPTER THREE

THE SYSTEHM

ORGANIZATION

Processing of a SAMPLE program consists of tvwo phases:
compilation and execution. Compilation, in turn, consists
of two steps: scanning and parsing. The processes of
scanning, parsing, and execution operate on the following
four passive storage devices:

1. The Text Storage Unit (750)

2. The Memory

3. The Instruction Store (IS)

4. The Ready List {RL)

The scanner accepts the source program as a string of
characters. Scanning through the program from 1left to
right, the scanner recognizes reserved words, names, and
other syntactic entities, converts them to symbols, and
places them in the Text Storage Unit,

The input to the parser is the output of the scanner:
a string of symbols in the TSU which represent the source
program. The parser performs "reductions" on these symbols
according to the rules of the SAMPLE grammar, meanwhile

emitting the object program into the Memory, Instruction

- 49 =

~

Store, and Ready List. At the conclusion of pérsing, the
TSU will contain the single goal symbol <program>, and the
other storage entities will contain the object progranm,
ready for execution.

When the program is ready for execution, the
Instruction Store (IS) contains a number. of instructions,
each of which has an opcode and up to four operands. Host
of the operands are addresses of data in the Menory. The
instructions in the IS do not necessarily appear in the
order in which they will execute. The Ready List (RL)
contains copies of those instructions which are currently
ready to be executed. Each cell in the Memory contains,
in addition to a data value, a pointer to a 1list of
instructions in the IS which depend on that particular data
value as an input operand. The Memory cell contains tﬁé
address of one such instruction, and the instructions forn
a linked list, each one pointing to the next.

The actual execution is performed by many processors,
all active simultaneously. All processors continuously
execute the same sequence of actions, called the Basic
Instruction Routine, which has the following steps:

1. The processor obtains from“ the Ready List an

‘instruction which is ready to be executed.

2. The processor fetches the input operands fron

the memory, performs the indicated operation, and

writes the resulting output operand 1in nmemory.

- 50 -~

3. 7The processor now follows the linked 1list of
instructions which are waiting for the memory cell
which has just been defined. In each such
instruction, the ready bit 1is turned on for the
‘opérand in gquestion. If any such instruction
becomes ready {all its ready bits are onj), it is
added to the Ready List. When the processor
reaches the end of the list of waiting
instructions, it returmns to step (1) above.

Execution is complete when all processors are idle and the
Ready List is enpty.

During execution, many processors are making
simultaneous access requests to the Memory, IS, and RL. In
order to facilitate parallelism, each of these storage
units is organized into several banks, and the addresses of
cells within the unit are interleaved among the banks.
Bach storage unit can simultaneously service multipla
access requests if the cells to be accessed lie in
different banks. Thus many processors can be active with
a minimum of storage conflicts.

The four storage units are described in detail below.
The processes of compilation and execution are described in

detail, with examples, in the following chapters.

THE TEXT STORAGE UNIT (TSU)

The Text Storage Unit accepts the source program from
the scanner, and contains the partially-pafsed program at
all times during parsing. The program is represented in
the TSU as an ordered string of symbols from the SANMPLE
grammar. This thesis does not specify the means by which
the scanning and parsing algorithms are to be implemented;
therefore we will not specify the detailed structure of the
TSU. One possibility is that conmpilation of SAMPLE
programs might be done on a conventional machine, and the
resulting object program executed on the SAMPLE systen.
In this case, the TSU is simply the memory of the
conventional machine.

However it is implemented, the TSU must contain Sn
ordered sequence of synmbols, aﬁd the sequence must be able
to be modified during the parsing process. Each symbol
nust contzin the following information:

%« A "type" field, which denotes one of the symbol

types of the SAMPLE gramnar.

2. A "value" field, which contains a reference to the

value of the symbol. This might be:

a. A memory address (M-reference).

b. A tag for which no memory cell has yet been
allocated (T-referencé).

c. The address of an instruction in the IS

(I-reference).

- 52 -

3. A "code begin" field which points to the first of a
linked list of instructions in the IS which are
associated with the symbol.

4. A "code end" field which points to the last of the
linked list of instructions in the IS which are
associated with the symbol.

In the following chapters, it will occasionally be
necessary to represent a TSU symbol. Terminal symbols will
be represented by themselves, such as L Nonterminal
symbolg will be represented by their ‘'type", *“value", and
“"code begin" fields enclosed in brackets, such as
<term.T1.I2> ., If the content of one or more of these
fields is immaterial, it may be omitted; for example, the
above symbol might have been written as <term.T1> or even

as <term> .
THE MEMORY

The Memory is the storage place for data during the
execution of a program. Its entries, called ‘'"cells", are
addressable by ordinal numbers. Memory addresses are
referred to as "M-references", Each memory cell contains:

1« A “type" Dbit, which denotes vhether the cell

contains a number or a tuple.

2. A "ready" field, which can denote one of eight

levels of readiness. The levels of readiness

correspgnd to levels of nesting of loops. Level

- 53 -

-~

seven denoctes the main proéram, level six a simple

loop, level five a nested 1loop, etc, The zeroth

level of readiness denotes "™not ready on any
level"., TFor a tuple to be marked "ready", only its

Ufirst", "last", and "start" fields must be defined;

none of its elenments need be defined.

A "content" field.

a. If the cell is a number, the ‘Ycontent® field
contains a real number or the special value
UNDEFINED.

b. If the cell is a tuple, the "content" field
contains:

1. A "first" field equal to the first subscript
number of the tuple. -

2., A "last" field equal to the last subscriét
number of the tuple. (If the content of the
cell is the null tuple, the "first" and
"last" fields contain a special coie.)

3. A& "start" field which points to the nemory
address containing the first tuple elenment.
A1l tuple elements must occupy contiguous
cells in memory, beginning with the cell
pointed to by the "start" field. Each
tuple element may be either a number or a
tuple. If the tuple has no elements, the
wstart" field contains a special *"null®

code.

- 54 -

-~

4. An "old" field, which poin£s to another memory c=11,
Irn loop processing, this field points to the value
of this cell the 1last time around the loop.

5. A "link"™ field, which points to an instruction in

the IS which depends on the memory cell as an input
operand. This instruction is the first of a 1linked
list of dependent instructions which must be updated
when the memory cell becomes ready. The "link"
field may contain the null pointer,

The merory is organized into banks, each of vwhich can
independently service an access request in one cycle. The
menory addresses are interleaved among the banks in such a
way that successive addresses are in different Dbanks.
Requests for a particular memory address are automatically
routed to the correct bank. The memory can service tﬁe
following types of requests (request parameters shown 1in

parentheses):

1. Hemory Read (MR {(address))
The contents of cell (address) are sent to the

requesting processor. The cell is unchanjed.

2. Memory Read-Write (MRW (address) (data))
The contents of cell (address) are sent to the
requesting processor,. and {(data) replaces all the
fields of the memory cell except the "link"” field,

which remains unchanged.

3.

4.

- bg -

Memory Read-Write Link Conditional
(MRWLC. (address) (data) {level))

The contents of cell (address) are sent to the

requesting processor. The "ready"” field of the

memory cell at (address) is compared to (level). If
the memory cell is ready on the same or a 1lesser
level than (level), the cell is unchanged; othervise
(data) replaces the "link" field of the <cell, and
its other fields are unchanged.

Memory Allocate (MA {number))

{Number) new, unused memory cells are allocated to
the requésting processor, in a connected block. The
processor is given the address of the first cell in
the block. During the run of a program, memory
cells are always allocated in order of ascending
addresses. A central allocation register contains
the address of the first non-allocated memory cell.
Servicing a Memory Allocate request simply consists
of returning the content of the allocation register
to the requesting proceésor, and incrementing the
allocation register by (number). Since the
allocation register can be a fast electronic
register, we assume that many Hemory Allocate
requests can be serviced in one cycle. Memory
Allocate reguests do not make any memory bank busy.
It is assumed that all the newly-allocated memory

cells are marked "not ready on any level"™,

- 56 -

THE INSTRUCTION STORE (IS)

Instructions are placed in the Instruction Store by tha
compiler, and are modified and executed by the processors.
The 1I5 entries are addressable by ordinal numbers.
Instruction addresses are referred to as "I-referencas®,
Each imnstruction contains:

1. A "level" fjeld, which <c¢an denote one of eight

levels, corresponding to loop nesting levels,

2. An %opcoda%", which denotes a particular operation,

or may be one of the following special codes:
a. Continuation of previous opcode

b. ITERANT

Cc. PARAMETER

d. RESULT

€. INTERNAL

f. DOUBLE

g. LOCAL

h. STARTUP

i, NESTED

3. Four operands, each of which contains:

a. A reference to the actual operand. This may be:
1« A memory address (M~-reference).
2. A tag for which no memory cell has yet been
allocated (T-reference).
3. The address of another instruction

(I-reference).

4.

- 57 - .

o~

4, A "literalw, tepreéenting an integer value
{L-reference).

5 Unused (instruction has fewer than foure
operands) .

b. A "ready" bit, denoting that the operand cell is
ready on at least the same level as the level of
the instruction. If the operand is an 1I- or
L-reference or unused, it is always considared
to be ready and its ready bit is automatically
set.

c. A "link" field which points to another
instruction. By means of these 1link €fields,
linked lists are formed of instructions which
are waiting for a particular memory cell as an
input operand. The link field of the memofy
cell points to the first such instruction, and
each instruction points to the next instruction
by means of the link field associated with the
particular operand in question, Because each
instruction has four operands, it can
participate in up to four linked lists. A 1link
field may contain the null pointer.

A "statement link" field which points to another

instruction. By means of this field, instructions

resulting from the same source lanqguage statement
form a linked list for processing 'by the EXPAWND

instruction. This field may contain the null pointer.

« 58 -

-~

5. A "presence" bit. When thé cell 1is allocated but
does not yet contain an instruction, this bit is
set to 0 (“not present®), After an instruction has
been placed in the cell, the bit is set to 1
{"present™) .

The IS is organized into banks, each of which can
independently service an access request in one cycle. The
instruction addresses are interleaved among the banks in
such a way that successive addresses are in different banks.
Regquests for a particular address are automatically routed
to the correct bank. The IS can service the following types

of requests (request parameters shown 1in parentheses):

1+ Instruction Read (IR (address))
The instruction at (address) 1is sent to the

requesting processor.

2. Instruction Write (IW ({address) (data))
(Data) becomes the new IS entry at (address).
The “presence" bit is part of the data which |is
vritten; this request usually sets this bit to

“present.

3. Instruction Set Ready Bit
(ISRB (address) (data) (level))

The instruction at (address) 1is sent to the

regquesting processor. In addition, the operands of

4.

5.

- 59 -

the instruction are all compared with (data); all
operand references which match (data) have their

ready bits turned on if (level) is greater than oc(

~equal to the "level" field of the instruction.

Instruction Set Ready Bit, Low Priority

{ISRBL (address) (data) (level))

This request behaves exactly the same as ISRB except
that it has lovwer priority thamn any other request,
It is used by a processor vwhich is trying to do an

ISRB on an instruction which 1is not yet present.

The low priority of the ISRBL request prevents it

from “locking out" any processor which may be trying

to write an instruction into {address).

Instruction Allocate (IA (number))

{Number) nev, unused instruction cells are
allocated to the requesting processor, in- a
connected - block. The processor 1is given the
address of the first cell in the block. During the
run of a program, instruction cells are alwvays
allocated in order of ascending addresses. A
central allocation register contains the address of
the first non-allocated instruction cell.
Servicing an Instruction Allocate raquest simply
consists of returning the content of the allocation

register to the requesting processor, and

- 60 -

incrementing the allocation register by (numb2r).
Since the allocation register can be a fast
electronic register, we assune that many
Instruction Allocate requests can be serviced in
ohe cycle. Instruction Allocate requests do not
make any instruction bank busy. It is assumed that
the presence bits of all newly-allocated

instructions are set to “not present®,
THE READY LIST (RL)

The Ready List contains those instructions which are
ready to be executed because all their operands have been
found to be ready. The entries are not addressable, Each
entry consists of an opcode and eight operands, each of
which may be an M-, I-, or L-reference, or unused.

The RL is organized into banks. Because Ready List
requests do not refer to specific addresses, any bank nmay
service any request, subject to certain constraints
mentioned below. A unique but random ordering ensures that
each incoming request in a givenm <cycle 1is serviced by a
different bank until all banks are busy. The RL can service

the following types of requests:

1. Readylist Add (RA (data))
This request can be serviced only by a bank which is

not already full. The (data), consisting of an

2.

- 61 =

instruction ready to be executed, is added to the
Ready List. However, in the case when all banks of
the RL are empty and another processor is requesting
a simultaneous Readylist Fetch (RF), the (data) is
sent directly to the other processor rather than to

the Ready List.

Readylist Fetch ({RF)

This request can be serviced only by a‘bank which is
not éompletely empty. The bank sends one of its
ready instructions to the requesting processor, ani
deletes tﬁis entry from the bank. Each Ready List
bank serves as a first-in, first-out queue of ready
instructions, responding to each RF reguest by
returning the instruction which has been present
in the bank for the longest time. If all banks of
the RL are completely empty and another processor
is requesting a simultaneous Readylist Add (RA),
the other processor sends 1its instruction address

directly to the requesting processor.

- 52 -

CHAPTER FOUR

COMPILATION

THE SCANNER

The purpose of the scanner 1is to convert the SAMPLE
source program from a string of alphabetic and numeric
characters to a string of symbols which are meaningful to
the recognizer. In so doing, the scanner also removes
comments and block structure from the program, allocates
memory cells to names, and performs certain other operations.

Input to the scanner is the SAMPLE program as written by
the programmer. The scanner makes a single sequential pass
over the program. During this pass, "bindings" are made
according to the following rules:

1. W#hen the scanner reads a declaration which 1is not
inside a function definition, it binds a unique
memory address {M-reference) to each declared
variable name, and a unique instruction .address
{I-reference) to each declared function nanme. The
scanner must request allocation of enpty cell
addresses from the memory and the instruction store

for this purpose.

2.

3.

- 83 -

When the scanner reads a formal parameter list in a
function definition, it binds a unique tag
{T-reference) to each parameter. In addition, it

creates in the IS a linked list of instruction cells,

each containing one of the newly-bound T-references,

with the label "parameter" in the Qpcode field. The
T-references must appear on the linked 1list in the
same order as they appeared in the parameter list,
The symbol <name list.Ip> is enmitted, where 1Ip is
the starting address of the linked list.
When the scanner reads a declaration in a function
body (or in any block nested inside a function
body), it binds a unique tag (T-reference) to each
declared variable name, and a unique,
nevly-allocated instruction address (I-reference) to
each declared function nane. In addition, the
scanner makes additions to a linked list of
instruction cells which begins at the I-reference
bound to the name of the function inside whose body
the declaration is found. To this list is addgd all
the T-references bound to the newly-declared nanmes,
in cells labelled "internal®. In the case of a
declaration occurring inside a function which 1is
nested inside another function, the T-references are
added to the *internal" 1list of the innermost
function only. Thus, each function name is bound to

a linked 1list of instruction cells labelled

- 64 —

"internal®, containing T-references for all
variables declared inside the function.

Whenever the scanner encounters a declared nane or
function parameter which duplicates a nane which was
declared or appeared as a function parameter in an outer
block, the old reference bound to this name is "pushed down"
and a new reference binding is made. The new binding is
considered active until the scanner comes to the end of the
block in which the binding was nmade; at this time, the new
binding is deactivated and the old reference 1is once again
bound to the name. Since a name can be declared repeatedly
in nested blocks, the scanner must, in general, remember the
references bound to a given name at each lexic 1level fronm
the outermost block to the block which 1is currently being
scanned., This forces the scanner to be sequential in nature
and to contain a "pushdown stack"™ structure to record the
history of reference bindings for each name. The scanner 1is
the only necessarily sequential process in the SAMPLE
systen.

As the scanner makes its single pass through the
program, it emits a sequence of symbols into the Text
Storage Unit. Each symbol emitted consists of a symbol type
code, and may or may not also contain an M-, T-, or
I-reference. The symbols are emitted and placed into the
TSU in order as they are recogrized by the scanner. The
following rules for emitting symbols are observed by the

scanners

1.

2.

4.

6.

Blanks are ignored, except insofar as they delimit other
symbols. For example, a blank is required between X and
IS and between IS and TUPLE in the bounding statement’
X IS TUPLE(0,5);

Comments are ignored; whenever the scanner recoygnizes
the reserved word COMMENT, it skips over all characters
until the next semicolon without emitting any symbols.
Declarations cause no symbols to be emitted, bﬁt update
the internal binding tables of the scanner.
If a declaration is inside a function definition, it
may cause additional entries to be made to the
“"jinternal" list of the function.

When a parameter list is encountered in a functien
definition, a linked ‘"parameter 1list" is created in

the IS, and the symbol <name 1list.Ip> 1is emitted,

where Ip is the starting address of the 1linked list.

When an pperator, punctuation symbol, 9r reserved word
is encountered, a symbol is emitted whose symbol type
dengtes the particular symbol encountered.

when a name (any sequence of characters beginﬁing
with a letter, which is not a reserved word)
is encountered, a symbol of type <name> is emitted,
containing the M-, T-, or I-reference bound to the nanme
in the block which is currently being scanned.

When a constant numbér {such as -5 or 2.6E8) 1is
encountered, the scanner requests allocation of an enmpty

memory cell, and places in the cell the systen's

- 66 -

internal representation €for the given constant. The
memory cell is marked ready om level 0. A symbol of
type <number> is then emitted, containing an M-reference
equal to the address of the memory wcell containing the

constant.

THE PARSER

After the scanning process is complete, the rerainder of
the compilation consists of recognizing reducible strings of
symbols in the TSU and performing the appropriate reductions
according to the SAMPLE grammar, while emitting appropriate
instructions into the Instruction Store.

There egxist standard algorithms, such as HcKeeman's
Extended Precedence HMethod (29) (30}, for determining
whether a given string of symbols should be reduced, by
examining nearby context symbols. These algorithms denmand
that the program be parsed by a seguential left-to-right
scan. In conventional languages, a sequential 1eft-to-right
parse is also pecessitated by two other considerations:

1« The code generated during the parse must be enmitted

in left-to-right order so that it can be executel
properly.

2. The parser must nmake use of context-sensitive

information, pertaining to declarations and block
structure, which can only be obtained by a

left—to-right scan of the entire program,

- 67 -

However, in the SANPLE systesn, both'of these considerations
have been elinminated. The machine instructions are
sequenced by their data dependencies rather than by their
physical ordering, and allkcontext—sensitive information has
been filtered out of the SANPLE program by the scanner
before the parsing process begins. Therefore, if an
algorithn could be found for deciding whether to reducs a
given string of symbols, without requiring that all symnbols
to the left of the given string already be parsed, the
parsing of SAMPLE programs could be treated as a parallel
process. Several parsing processors could simultaneously
be active at different places in the TSU, independently
performing reductions and emitting instructions into tha
Instruction Store.

The reductions of the éAﬂPLE grammar are listed in
Appendix A, ‘together with the actions to be taken by the
compiler when each reduction is performed. The decision to
make the reduaction may be made either by a conventional,
left-to~-right parsing algorithm, or by am wunconventional,
parallel parsing algorithm. In every reduction, it 1is
implizit that the symbols on the right side will be replaced
in the TSU by the symbol on the left. When compilation is
complete, the Text Storage Unit will contain the single
symbol <pragram>, and the Memory, TInstruction Store, and

READY List will contain the éompiled code for the progran.

EXAMPLE

We will now consider how the compiler might treat the
simple program we used as an exalmple in Chapter Two. Tha

program is repeated below:

BEGIN
W €« A-B;
X €& (A+B) /¥W;
Y € (A%B) /¥W;
Z &« X>Y;

END

Before we can understand the action of the compiler, ve
must consider how the compiler treats iterated statements.
Iteration denoted by the guoted~tuple-name convention
described in Chapter 2 calls for all copies of the 1iterated
statement to be executed in parallel, if possible, In
order to accomplish this purpose, the SANPLE system
physically produces multiple copies of the machine
instructions which result from the iterated statement,
- However, since the number of iterations may be data-
dependent, it is not known at compile-time how many copies
of the machine instructions must be made. Therefore, the
conpiler produces, for each machine instruction, a template
from which multiple copies may be produced at run-tinme.

The template contains actual memory addresses

- 69 -

(M-references) for those operands identified by name in the
original source program, because each name in the source
program is uniguely mapped into a single nmemory cell,
regardless of its appearance in iterated statemnents.
However, for operands which represent conmpiler-generated
intermediate results (such as the quanti;y {(A+B) in our
example), the template contains only a tag (T-refereuce),
Only at run time will memory cells be allocated for the
T-references, and at this time, depending on thé nature of
the iteration, possibly many memory cells may be allocated
for a single T-reference.

The nachine instruction which expands the templates
into multiple new machine instructions, allocates memory
cells for the T-references, and replaces the T-references
by real menory addresses in the nevly-generated
instructions, is the EXPAND instruction. The output of the
comnpiler for a statement in the original source program is
the following:

1« A 1linked 1list of instruction templates, linked

toggther by their “statement link" fields.

2. An EXPAND instruction which has the above list

as its operand, and which will generate real
instructions from it at run-tinme.

The exaﬁple program above contains four statements.
Fach statement is compiled into an EXPAND instruction and
a linked 1list of templates, as explained above. In our

simple case, none of the statements involves 1iteration, and

- TO -

so no additiocnal information is needed before we <can expand
the templates; therefore, all the EXPAND instructions are
judged to be ready, and are placed in the Ready List by the
compiler.

The resuits of compilation of our example are shown in
Figure 4.1. The memory addresses allocated for the names
A, B, W, X, ¥, and Z have been denoted Ma, Mb, Mw, MNx, HMy,
and Mz, respectively. Only memory cells Ma and M#b are
assumed to be defined (ready) at the beginning of
processing. The two T-references generated by the compiler
to denote intermediate results in the templates are T1 and
T2. The four statements in the source program resulted in
linked lists of instruction templates of 1length one, two,
tvo, and one, Trespectively. %#hen execution begins, the
four EXPAND instructions will all begin generating real

instructions from the templates.

(da)
(1ib)
(¥w)
{nx)
(fy)
{(Hz)
(11)

(12)

MEMORY

Value

Link

- 71 -

INSTRUCTION STORE
Operands Stat.
Opcode| (R)=ready bit on|Link
{In - Mw({).Ma(),4b()
{1I2) ¢ T1().,Ma{),ub() >
(13) /oPx{) TH() Me()
(I4) ¥ [p2(y.Ma(),Mb() o
(I5) /. PYC),T2(), 0vw()
(16) > Hz().Hx() Ny ()
READY LIST
EXPAND 1I1
EXPAND 12
EXPAND T4
EXPAND I6
FIGURE 4.1

EXANPLE PROGRKM AFTER COMPILATION

- T2 -

CHAPTER FIVE

EXECUTION

PROCESSORS

The execution process is carried out in parallel by nwmany
processors., Each processor may have many ports through
wvhich it may make simultaneous requests of the MNewory,
Instruction Store, and Ready List (the types of requests
which may be made have been described in detail in the
SYSTEH chapter.) The Memory, IS, and RL operate on a
synchronous basis; in each cycle, up to one service request
per bank may be satisfied by each storage unit. A priority
ordering is defined among the processors, and among the
ports of each processor. When two ports make a request of
the same storage bank, the lower-priority port is not
satisfied until a later cycle. A processor may not proceed
to make further requests until all its previous requests
have been satisfied.

A1l the processors repeatedly execute a sequence of
operations called the Basic Instruction Routine (BIR). The
BIR is a several-step process, gnd at any given poinﬁ in
time the various processors may be at various points in

executing the BIR. During execution of the BIR, a processor

-~ 73 -

may find it necessary to execute one or more of two
auxiliary routines called the Readiness Routine and the
Instruction Generate Routine.

Processors may be added to or deleted from the system at
will without altering the basic structure of the systen.
Similarly, the number of request ports per processor may be
altered at will.

The 48 machine instructions are listed and described 1in
detail in Appendix B. The Basic Instruction Routine,
Readiness Routine, and Instruction Generate Routine are

described belovw.

THE BASIC INSTRUCTION ROUTINE

1« By means of a Readylist Fetch (RF} request, the
processor obtains an instruction which 1is ready to
be executed.

2. By appropriate Memory Read (MR) and 1Instruction
Read {IR) regquests, the processor reads all operands
necessary to execute the instruction. This nmay
require many sequential requests in the case of sone
instructions which operate on 1linked 1lists in the
Is. It is assumed that each processor has
sufficient internal storage ¢to store operands and
intermediate results .during processing of an
instruction, and that the access time of this

internal storage is small corpared to the access

- 74 -

time of the main storage devices which are éxtetnal

to the processor.

The processor executes the instruction. This may

involve any of the following processes:

a. ©One or more memory cells may be assigned values,
or the readiness level of a memory cell may be

increased, When this occurs, the processor

executes the Readiness Routine (described
belovw) .

b. One or more new instructions may be <created and
rTeleased for execution. When this occurs, the
processor executes the Instruction Generate
Routine {described below).

c. New areas of memory may be allocated by means
of Memory Allocate (MA) requests.,

d. New instructions may be placed in the IS but not
released for execution. This is done by means
of Instruction Allocate (IA) and
Instruction Write (IW) requests.

e. Existing instructions in the IS, which have not
yet been released for execution, may be altered.
This is done by means of
Instruction Read (IR) and Instruction Write (IW)
cxequests.

f. Memory cells which wvere preViously marked ready
on a given level may be marked not ready on that

level. This is done by means of Instruction

- 75 -

Read (IR) and Instruction Write (IW) requests.
This action is taken only by certain
instructions for the implementation of 1loops.
No memory cell is marked not ready on a given
level until all instructions which use that
memory cell on that level have been executed;
hence, no updating of dependent instructions is

necessary when a memory cell is marked not ready.

THE READIKESS ROUTINE

1.

This routine is executed vhen one or more menory
cells have their values newly defined by a processor,
or when the readiness 1level of a- memory cell is
increased. The processor writes the new values
into the memory cells by means of HMemory Read-Write
{(MRW) requests. The "ready" fields of the nmemory
cells are set to the 1level of readiness of the
instruction which defined then., The "linpk" fi=lds
of the newly-defined cells are unchanged. The MRW
requests read from memory the contents of the
#link" fields of the newly~defined cells. For each
nevwly-defined memory cell, the following is done:
The instruction pointed to by the "link" field of
the newly-defined cell is dpdated by means of an
Instruction Set Ready Bit (ISRB) request. This

reads the instruction into the processor and, in

- 76 -

addition, sets the appropriate ‘"operand réady" bit
or bits in the copy of the instruction which remains
in the IS, if the newly~defined operand is ready on
at least the 1eve1 of the instruction, If
the %"presence" bit of the instruction just read
is set to '"not present", the processor issues
repeated Instruction Set Ready Bit, Low Priority
{ISRBL) requests for the instruction until the
presence" bit is found to be set to *'present®, The
processor then examines the instruction which it has
read; if all its “operand ready" bits are on except
the one associated with the newly~defined operand,
it enters the instruction into the Ready List by
reans of a Readylist Add (RA) reguest. (Another
Instruction Read (IR) request may be necessary to
read the second half of a two-cell instruction.)
{(If all “operand ready¥ bits, including the one
associated with the newly-defined operand, were
already on, the instruction has already been added
to the Ready List at an earlier time; hence, it is
ignored.) In addition, the processor finds the
"link" field of the instruction which is associated
with the newly-defined operand (or the first such
operand, it there are nore than one) . The
processor then issues an ISRB request for the
instruction pointed to by this "link" fielld, if

any.

- 77 -

The processor continues in fhe above manner down the
linked list of dependent instructions, issuing ISRB,
ISRBL, and RA requests as needed, until it comes to-
a link field equal to ‘*none". (This may occur
before any instructions have been fetched.) This
termjnates the Readiness Routine. If the Readiness
Routine is the last step in the Basic Instruction
Routine, and 1if the 1last instruction on the
dependency 1list is found to be ready, this
instruction is not added to the Ready List but is
retained, and a new Basic Instruction Routine is

begun to execute it.

THE INSTRUCTION GENERATE ROUTINE

1.

2.

This routine 4is executed when one or nore new
instructions are to be released for execution. For
each such instruction, the processor requests a new
IS cell or pair of cells to be allocated by means of
an IA request. These requests automatically
set the "presence"™ bits of the allocated instruction
cells to "not present". The addresses of the
allocated cells are returned to the processor. Then,
for each newly-released instruction, the following is
done:

The instruction may have one or more input operands

(M-reference operands whose "operand ready" bit is

- 78 -

not yet onj. The proceésor issues é Memory
Read~Write Link Conditional (HRWLC) request for each
such operand. These requests read the operand cells,
and, for each cell not yet ready on the level of the
new instruction, its "link" field is mnade to point
to the new instructiocn.

The processor then examines the memory cells which
wvere read by the MNRELC requests, For each cell
having its "ready" field equal to or greater than
the level of the newly-released instruction, the
corresponding "operand ready®™ bit of the instruction
is turned on. All other input operands have had
their "link" fields altered to point to the new
instruction; hence, the old “link” fields of these
cells, which were read by the MRWLC requests, are
inserted into the %link" fields of the <corresponrding
operands of the new instruction. Thus the
continuity of the list of dependent instructions 1is
preserved, and the new instruction is added at the
head of the list.

The processor has now filled in all ™"operand ready"”
and "link® fields of its internal <copy of the new
instruction. If the instruction has any non-ready
operands, the processor places the instruction into
the IS cell provided for it by nmeans of an
Instruction Write (IW) request, which sets the

“presence” bit of the instruction to "preseht". It

- 79 -

the instruction has all its operands ready, the
processor sends it directly to the Ready List by
means of a Readylist add (RA) request. If the
Instruction Generate Routine is the last step in the
Basic Instruction Routine, and if a newly-releasedi
instruction is found to be ready, this instruction
is not add=d to the Ready List but is retained, ani
a new Basic Instruction Routine is begun to execute

it.

EXAHPLE

We will now study the execution of the program we used
as- an example in Chapters 2 and 4. (The reader should see
Figure 4.1 for the state of the system before execution
begins). We will consider the execution process to occur
in two phases: expansion and processing. {In reality,
these phases are overlapped.) In the expansion phase, the
four EXPAND instructions, which are already known +to be
ready, are executed. The results of this phase are shown
in Figure 5.1 and are described below:

1. The instruction templates I1 - 1I6 (not shown) are

used to generate the real instructions I7 -~ 1I12.
In our case, each template gives rise to exactly
one instruction. (If any iterated statements had
occurred 1in the source program, some templates

would have yielded multiple instructions.)

- 80 -

2. Hemory cells are allocated for st&rage of
intermediate results (T-references in the conpiled
code). In our case, the T-references T1 and T2 are
changed to memory addresses M1 and 2.

3. As the newly-generated instructions are released
for execution, memory cell pointer fields are
filled in, so that each nmemory cell contains a
pointer to the 1list of instructions which are
waiting for that cell as input. In our case, MNx,
My, M1, and M2 are all needed by exactly one
instruction each, and Mw is needed by two
instructions, which are linked together by the
#link" field of operand 3 of instruction 19.

4. In each instruction, ready bits are turned on for
all output operands, and for all input operands
which are currently ready {(in our case, Ma and U4b).

5. Those instructions which have all their ready bits
on are placed in the Ready List. In our case, this
inclades instructions 17, 18, and I10.

During the second phase of execution, the instructions

in the Ready List are executed. This makes ready the
operands of pther instructions, which are executed in turn
until all processing 1is conmplete. In our example, the
execution of I7, I8, and I10 will make ready memory cells
Mw, M1, and H2. The processors will then execute ISRB
storage cycles on the instructions poinied to by the link

fields of these memory cells. As a result, instructions I9

and I11 will
Ready List.

memory cells
will trigger

systen after

- 81 -

be seen to be ready, and will be plaéed on the
#hen these instructions have been executed,
Mx and My will be made ready, which in turn

the final instruction, I12., The state of the

processing is complete is shown in Figure 5.2.

- B2 -

MEMORY

INSTRUCTION STORE

Value | Link .
, Operands {Stat,
Opcode| (R) =ready bit on}lLink
{Ma) A ————
(Mb) B (17) - [w (R), Ma (R) , b (R)
(Mw) '\\(IB) + M1(R),Ha(R),nb(R)
(Mx) . , (19) / HMx{(R) MI{), ,Mw()
{1y) '\ (110) * M2 (R),HMa (R),¥b(R)
(Mz) (r11) / HY(R} M2{(), Hu ()
(1) '/ {I12) > Mz (R)Mx(),8y()
{(n2) c//
READY LIST
(I7) - Mw,Ma,Mb

(I8) + M1,Ma,Mb

(I10) * M2,Ma,Mb

FIGURE 5.1

EXAMPLE PROGRAM AFTER EXPANSION

(ta)
(Mb)
(Mw)
(ux)
(My}
(11z)
(n1)
(12)

MEMORY

Value

Link

A-B
(A+B) / (A~B)
(A*B) / (4-B)

T or F
4+B

A*B

"8'3“

NSTRUCTIOW STORE

Operanis
{R) =ready bit on

Stat.
Link

Mw (R) , Ha (R) , b (R)
M1 (R) , Ma (R), ub (R)
x (R) ,H1(R), 1w (R)
42 (R) ,Ma {R) , Kb (R)
My (R) , M2 (R) , M {R)

"z (R) ,Mx (R) , My (R)

I

Opcode
{(17) -
{18} +
(19) /
(X10) *
(T11) /
(X12) >
READY LIST
FIGURE 5.2

EXAMPLE PROGRAM AFTER EXECUTION IS COMPLETE

CHAPTER SIX

EVALUATION AND CONCLUSIONS

SIMULATION EXPERIMERTS

This chapter will describe a series of simulation
experiments intended to investigate the behavior of the
proposed system under various conditions, and to measure the
speed advantage which might be realized by single-assignmnent
parallel processing as compared wvwith conventional, serial
processing. The simulations to be described in this ~chapter
were done by hand.

For the purpaose of the experiments, an exanple problen
has been chosen, and programmed both in SAMPLE and in IBH
System/360 Asseabler Language {23) (25), using those
algorithms which best exploit the advantages of the
respective systems. The problem chosen was multiplication
of two square matrices. The SAMPLE program and the 360
program were both written to handle square matrices of any
size without changing the code of the progranm. In each
case, the operand matrices are assumed to be present in
mepory at the start of processing, and the product matrix 1is
left in memory when processing 1s concluded. The 360

program, which is listed in Appendix C, was written in such

- 88 =

o~

a way as to minimize memory accesseé by using registers for
storage of interrediate results. The SAMPLE program, which
is listed in Appendix D, is based on the algorithm used és a-
programming example in Chapter 2. Although our nmeasurements
will be directly applicable only to the matrix
multiplication program, it is hoped that the behavior of
this program is representative of a larger class of nunmeric
problemns which might be programmed on the SAMPLE systen.

In simulating the behaviors of <the SAHMPLE and 360
systems, some conmon measure of execution time 1is needed.
The unit of measure selected is the memory cycle tine. In
the case of the 360, a "cycle”" is considered to be a single
memory access used to fetch an instruction, ioad a register,
or store the contents of a register. In the case of the
SAMPLE system, a "cycle" is a period of time in which each
of the system?s storage banks can service a single storage
command, of one of the types 1listed in Chapter 3, By
measuring the nunmber of cycles used in the execution of the
respective programs, we hope to measure the speed gain
realized by the simultaneous activity of the various SANPLE
storage banks, as compared to the strictly serial nmemory
accesses in the System/360 organization.

The ability of the SAMPLE system to exploit the
opportunities for parallelism in its program is liwited by

the following four parameters .of the systemn:

1« The number of processors
2. The number of ports per processor
3. The number of banks in the menory

4. The number of banks in the instruction store

A Yport" is a means by which a processor issues storage
commands to storage banks. If a processor has N ports, it
may issue up to N storage commands in the same cycle; if
these commands involve access to different storage banks,
they may all be satisfied simultaneously. The memory
addresses are interleaved among the banks in such a way that
the bank in which a given address falls 1is wequal to the
address taken modulo the number of memory banks; the sane
rule holds for interleaving of instruction addresses afony
the instruction banks.

The System/360 organization will be <compared with the
SAMPLE organization in two ways: {1) comparison of the
nunber of c¢ycles regquired to complete their respective
programs, subject to various constraints, and (2) comparison
of storage requirements for instructions and data. In order
to compensate for differences in word 1lengths between the
two systems, all storage requirepents ¥ill be measured 1in
bits. In computing the storage requirements of the SAMNPLE
system, all addresses of instructions or wmemory cells are
considered to be 20 bits long, giving the SAMPLE system an

address space of 1,048,576 words.

- 87 -

The execution times and storage requirements of the
System/360 for multiplying 2 x 2 and 3 x 3 matrices are
summarized in Table 6.1.

The execution times and storage requirements of the
SAMPLE System for the same problens, under certain
constraints, are shown in Table 6.2. For the colunnhs
labelled "unlimited system", the SAMPLE systenm is considsred
to have as many processors, ports, and storage banks as can
be utilized by the problem. The only constraint in such a
system is that each individual instruction or nmemory cell
can be accessed by only one processor in each cycle. Table
6.2 shows, for the unlimited systen, the numnber of
processors, ports, and storage banks which are needed in
order to realize the theoretical minimum execution time for
the given problen. Hovever, this theoretical uulimitéd
system is seen to require an unrealistic number of resources
and to use them gquite inefficiently, It uéuld not be
realistic, for example, to provide 102 access ports per
processor, as required by the unlimited system for 3 x 3
matrices. So the same programs have been run on a limited
system having exactly ten processors, four ports per
processor, +ten memory banks, and ten instruction store
banks. Table 6.2 shows that the limited system has measured
execution times only somewhat slower than the theoretical

minimum for the given programs.

-~ 88 -

-~

The results of Tables 6.1 and 6.2 are plotted in Fiqures
6.1 and 6.2. The following features of these figures should

he noted:

1. The execution times of the SAMPLE system are both
faster than the 360 and less sensitive to the size
of the problen. The theoretical maxinmum speed
factor Arealized by the unlimited SAMPLE system
over the 360 is 3.0 for the 2 X 2 matrix
multiplication and 7.9 for the 3 X 3 case.

2, The storage requirements of the 360 are both
smaller than those of the SAMPLE system and less
sensitive to the size of the problen. The storage
requirenents of the SAMPLE sjstem exceed those of
the 360 by a factor of 26.4 for the 2 x 2 case ani

36.4 for the 3 x 3 case.

Further insight into the behavior of the two systems can
be gained by studying the actual storage commands issued
during processing. The 360 spends all its memory cycles on
the conventional' functions of fetching instructions and
operands and storing results. These functions, which might
be lumped under the heading *"processing", are also performed
by the SAMPLE system. However, the SAMPLE system must also
perform two other functions not needed by the 360
organization. The first such 'function, éalled Yeyxpansion

overhead®, involves making multiple copies of instructions

- 89 -

-~

in order to process iterated sfatements in the source
program. Since the number of copies to be made is not known
until run time, the compiler only provides a template for-
each instruction, which must be expanded into multiple
instructions by means of the EXPAND instruction., The second
unconventional function of the SAMPLE systen, called
"readiness overhead¥, involves searching for ready
instructions. Whenever a memory cell becomes defined, the
list of instructions vhich are waiting for that cell must be
updated with the fact that the cell is ready, and any ready
instructions nust be placed on the Ready List.

It happens that the storage commands of the SAMPLE

system are clearly differentiated into categories which
fulfill the three functions of processing, expansion
overhead, and readiness overhead. Table 6.3 shovws the thrée
categories of commands, and the nunrbers of commands of each
category executed during processing of the 2 x 2 and 3 x 3
matrix multiplications. The bar graph in Figure 6.3 shows
the relative magnitudes of these categories, along with the
total number of cycles reguired by the 360 to solve the sane
problemé. The following features of Figure 6.3 should be
noteds:

1. The SAMPLE system requires more storage cycles than
the 360 for its "processiny" function alone. This
is probably due to the 1lack of 1internal registers
for storage of intermediate results in the SAMPLE

systen.

- G0 -

2, The SAHMPLE system spends approximately half its
storage cycles on “non-processing” overhead

functions.

Since the SAMPLE system organization requires more
storage accesses to process a given problem than the 360
organization, it is clear that the SAMPLE system derives its
speed advantage by overlapping accesses to different banks
into the same cycle. Some feeling for how this occurs can
be gained by examining the unlimited SAMPLE runs described
previously. In these runs, the degree of overlap is limited
only by the nature of the program and by the fact that each
storage cell can only service one access request in a given
cycle. Table 6.4 shows, for the unlimited 2 x 2 and 3 x 3
runs, the number of processors which 1issued storage access
requests during each storage cycle in the history of the
run. This data is plotted in Figure 6.4, Figure 6.4
reveals that the run contains two phases of approximately
equal duration, which might be called the ‘"expansion phise"
and the ¥processing phase®. During the expansion phase,
relatively few processors are active, expanding instruction
templates dinto nultiple copies to allow for iteration.
During the processing phase, the new instructions generated
in the expansion phase are executed, performing the actual
data manipulation of the program. MHost of the opportunities

for parallelism occur during the processing phase,

- 91 -

He have neasured the execution time of the SAHPLE systen
¥ith unlinited resources, and of the sanme system limited to
ten processors, four parts per processor, ten nmenmory banks,
and ten instruction store banks. We will now consider each
of these four types of resources individually, and
investigate more fully the effect on the SAMPLE system of
limiting each resource.

For each type of resource, we conduct a series of
experiments in which the given resource is more and nwror-
limited, but all other resources are unlinited, The extren:z
cases for each series of experiments are the <case in which
the system is limited to only one of the given resource (ona
processor, memory bank, etc.), and the case in which the
given resource, as well as all other resources, is
unlinited. Executicon times for the 2 X 2 matrix
multiplication program are measured for these extreme cases,
as well as intermediate cases, for each resource. The
results are shown in Tables and Figures 6.5, 6.6, 6.7, and
6.8. The Figures show that when any resource 1is scarce,
small changes in its availability make large changes 1in the
execution time; however, when a resource is plentiful, the
system is not sensitive to 1its availability. The curves
also show that nearly optimum speed can be realized with
relatively few copies of each resource; this is consistent
with our previously observed Tresult that the system with
only ten processors, four ports per processor, ten memory

banks, and ten instruction store banks performed only

- 92 -

somevhat more slowly than the unlinmited systenm for this

particular program. The ratio of execution times in the two

extreme cases (only one resource, unlimited resources) is

shown below for each resource:

processors: ratio = 6.5
ports per processor: ratio = 2.8
menory banks: ratio = 5.8

instruction store banks: ratio = 2.9

CONCLUSIONS

On the basis of the above experiments, the following

conclusions may be drawn:

1.

For certain problems, the SAMPLE scheme of single-
assignment processing has speed advantages over
conventional, serial processing. The SANPLE systen
regqujires more mempory accesses than a serial
processor to accomplish the same unit of work, but
the SAMPLE system is able to overlap these accesses,
resulting in a net speed gain.

In order to realize its speed advantage, the SAMPLE
system Trequires an expensive multiplicity of
Processors, sﬁorage banks, and storage access ports.
In addition, the number of bits of storage required
for a given unit of work is much greater in the

SAMPLE system than in a conventional system.

- 93 -

3. The storage and other vrequirements of the SANPLE
system exceed those of a conventional system by a
greater factor than its speed exceeds the speed of a -
conventional system. Therefore, the SANPLE type of
single-assignnent processing is not a cost-effective
way of utilizing a given quantity of hardware, Such
a method of processing should be considered only in
applications where raw speed is the only
consideration, or as a research tool for

investigating the properties of parallel systenms,

SUGGESTIONS FOR CONTINUED RESEARCH

A number of areas suggest themselves for continued
investigation and optimization of the SAMPLE system.

One such area 1is development of a parallel parsing
technique, as suggested in the COMPILATION chapter,
Particular attention might be given to how nmultiple parsing
processors might interact to coordinate their activities in
parsing a single progranm.

A second area for continued research concerns the
scheduling of instructions in the case when the Ready List
contains several ready instructions at the same tine. As
described in the "System"™ chapter, each Ready List bank
treats its instructions in . first-in, first-out fashion.
However, other methods of scheduling the ready instructions

could ke studied. For example, a priority ordering coulil

- 94 -

be defined among the opcodes, such that certain opcodes
would always be given precedence in the allocation of idle
processofs. Research could be conducted into choosing
the best priority ordering among the opcodes, or
into discovering an entirely different means of scheduling
ready instructions.

A third possible research area is the problem of garbage
collection. The size of the Hemory and the Instruction
Store in the proposed system tend to grow rapidly with the
complexity of the problem being run. No algorithm has yet
been proposed for de-allocation of an instruction cell which
has already been executed, or a memory cell which 1is no
longer needed. These problems are difficult for sevaral
reasons. Although an instruction has already been executed,
its cell»may still contain link fields which are active and
which may still be wused in updating other instructions.,
Similarly, although all instructions which use a given
memory cell have already been executed, more instructioas
may be generated later which refer to the same cell, and so
de~allocation of the memory cell is dangerous. In spite of
these difficulties, it would seem that the resource
de-allocation problem must be solved if the SAMPLE system 1is

to be feasible,

- 95 -

TABLE 6.1

BEHAVIOR OF’IBM SYSTEM/360 PROGRAN

2 x 2 3 x 3

matrices matrices
Execution Time (cycles) 164 48y
Data Storage (bits) 416 896
Instruction Storage (bits) 576 576

Total Storage (bits) 992 1472

- 96 -

TABLE 6.2

BEHAVIOR OF SAMPLE PROGRAM

2 x 2 2 x 2 3 x 3 3 x 3
matrices matrices matrices matrices

unlimited limited unlimited limited
system systen systenm systen

Execution Time (cycles) 55 90 61 155
Processors 18 10 41 10
Ports per Processor 40 4 102 4
Hemory Banks 95 10 195 10
Instruction Store Banks 64 10 128 10
Data Storage {bits) 7980 7980 16380 16380
Instruction Storage (bits) 18228 18228 35672 35672

Total Storage (bits) 26208 26208 52052 52052

Cycles

- 97 -

500 =
x
LOO -
o
e
6o)
300-—
200 ==
100 =~
unlinmited SAMPLE
x
o) y '
2X2 3X3

FIG. 6.1

EXECUTTON TIME COMPARTISON, 3A0 VS,

Total Storage Used (Thousands of Bits)

%X
50~
%
4O - \33/\)
&
30 =
%
20 -
10
360 <
P4
0 T 1
2x2 3x%3
FIG. 6.2

STORAGE USAGE COMPARISON, 360 VS. SAMPIE

- 99 -

TABLE 6.3

FREQUENCY OF USE OF STORAGE COMMANDS

2x2 3x3
matrices matrices

Processing (total) 298 659
MR 175 400

MRW 175 440

HA 15 29

RF 4o 76
Expansion Overhead (total) 149 301
MRWLC 72 143

IR 22 22

Iw 48 121

IA 7 15
Readiness Overhead (total) 110 275
ISRB 75 203

RA 35 72

Grand Total 557 1235

Hundreds of Commands

11 -

10 =

- 100 -

R = Readiness Overhead ‘
E = Expansion Overhead B
P = Processing
B
R
E
P
P
360 SANPLE 360 SAVPLE
2x2 3}(3
FIG, 6.3

USAGE OF STORAZE COMMANDS (BY TYPE)

- 101 =

TABLE 6.4

ACTIVE PROCESSORS VS TIME, UNLIMITED SAMPLE SYSTEHM

2x 23 x3 2x 2 3x3 2 x 2 3 x 3
Cycle case case Cycle case case Cycle case case
1 4 4 21 2 2 41 16 36
2 4 4 22 2 2 42 13 37
3 4 4 23 2 2 43 12 38
4 4 4 24 2 2 by 12 40
5 4 4 25 4 5 45 12 41
6 4 4 26 4 5 Le 1 39
7 4 4 27 4 5 u7 9 38
8 4 4 28 4 5 48 7 32
9 4 4 29 14 23 49 5 28
10 4 4 30 14 23 50 4 24
11 4 4 31 14 24 51 4 21
12 2 2 32 14 24 52 3 18
13 2 2 33 14 25 53 3 15
15 2 2 35 18 29 55 1 10
16 2 2 36 18 32 56 9
17 2 2 37 18 35 57 8
18 2 2 38 18 36 58 6
19 2 2 39 17 36 59 4
20 2 2 40 17 36 60 2
61 1

WALSAS TTIWVS QAIIWIIND “HWIL *SA SHOSSHOOHd HATILOV
°9 *HIA
2T0oky 8oFm.I09Q

09 0s Of o¢ 0c OT
1 1 1 i i ; |

102

mN

wd

SJI088900dJ 2ATIO0Y JO JI9q

Cycles

- 103 -

360
320 =
280 -
240~
200 X
160~
120~ ”
80
X
40—
0 l l l | ;
L4 8 12 16 20
Processors
FIG. 6.5
Processors Cycles
1 357
2 191
4 113
18 55
TARLE 6.5

SAMPLE EXECUTION TIME VS. PROCESSORS

Cycles

- 104 -

180 -
160 =
140 ~
120 =
100 =
4
4Q -
20 o=
0 T T T T
0 10 20 30 Lo
Ports per Processor
FIG. 6.6
Ports per
Processor Cycles
1 153
h 82
1l C3
LO 55
TABLE ©.6

SAMPLE EXECUTION TIME VS, PORTS PER PROCESSOR

oz

Cycles

360 ~
320 =
280 -
L0
200 =~
160 - \
120 — x\
4
80 —~ \
X
Lo -
0 T T T - p
0 20 Lo 60 80 1CO
Memcry Banks
FIG, 6.7
Memory
Banks Cycles
1 320
5 123
10 98
5 55

TABLE €.7

SAMPLE IXECUTION TIME VS,

MEMORY BANKS

Cycles

- 106 -

180 =~
160 =
140 =
120 =
100 =
80 = \\\
b4
60 N \
4O -
20 = p
0 T T T | T T
10 20 30 Lo 50 60
Instruction Store Banks
FIG., 6.8
Instruction
Store Banks Cycles
1 158
5 g0
10 o7
g 55

TABLE 6.8

SAMPLE EXECUTION TIME VS, INSTRUCTION STORE ZAMNKS

- 107 -

APPENDIX A

SAMPLE SENMANTICS

The reductions of the SANPLE grammar are listed,
together with the actions to be taken by the <compiler when
each reduction is perforned. In every reduction, it is
implicit that the symbols on the right side will be replaced
in the TSU by the symbol on the left. In the 1listing of a
reduction, terminal symbols are represented by themselves,
such as ¢ . Nonterminal symbols are represented by their
“"type", "value"™, and "code begin" fields enclosed in
brackets, such as <term.T1.I2> . Any of these fields may be
cmitted if its value 1is iumaterial, or if it is to be
treated by implicit conventions to be described 1later. The
references in the "value" fields of the TSU cells must be of
the type specified in the reduction listing, except that an
N-reference may be substituted for a T-reference. In all
symbols,

Mn means a memory address.

Tn means a tag without memory allocation.

In means a instruction address in the IS.

Ln means a literal integer value.

Any reference on the 1left side of a reduction thch
matches a symbol on the Tright side denotes that the

reference is copied from the old symbol into the new symbol;

- 108 =~

if a2 reference on the left side matches no reference on the

right side, it is newly created. For example,
<term.T1> 2:= <{factor.T1>

denotes that the reference T1 is copied from the o0ld symbol

into the nev symbol, whereas
{term.T1> 2:= <term.T2> / <factor.Ti>

denotes that the reference T1 is newly created. Each
T~refer§nce created by the parser is unique and distinct
from all other T-references.
In the listings of reductions, the term "normal
instruction chaining" has the following meaning:
1. The linked lists of instructions pointed +to by the
#code begin®™ fields of the symbols on the right side
of the reduction are to be 1linked together into a
single list. This can be accomplished by changing
the "statement link" field of the instruction cell
pointed to by the "code end" field of each fragment
to point to the beginning cell of the next
fragment.
2. Any new instructions emitted as a consequence of the
reduction are added to.the linked list at the head.
3. The new left side symbol in the TSU has its "codz2

begin" and "code end" fields set to point to the

- 109 -

beginning and end of the new 1list of instruction

cells.
The purpose of this convention is to ensure that each symbol
in the TSU points to a linked list of instructions in the IS
which are associated with the symbol. 1If the éymbol has a
value, the instruction which assigns its value will be the
first instruction of the 1linked 1list. When the phrase
"normal instruction chaining" is used with a reduction, the
"code begin® fields of its symbols will not be explicitly
shovwn in the listings below.

Some of the reductions call for emitting instructions
with nore than four operands. These instructions are placed
in two consecutive cells in the IS, with the opcode of the
second cell set to a special "continuation" code,

In some cases, it may be necessary to make an instruc-
tion wait for a dummy operand to become ready before the
instruction is executed, although the dummy operand does not
participate directly in the instruction. Dummy operands are
denoted for any instruction by the use of parentheses. For
example, ASSIGN M1,M2, (M3) behaves exactly 1like ASSIGHN
M1,M2 except that it cannot be performed until the dumny
variable M3 is ready.

In the listings of reductions below, to "emit®™ an
instruction means to place the instruction in a
newly-allocated cell in the Instruction Store, but not to
release it for execution. To “release an instruction for

execution™ results in the sequence of actions described in

- 110 -

detail under “Instruction Generate Routine" in the

EXECUTION chapter.

<program> ::= <block.I1> .
Definition: 1I1 is the starting address of a linked list
of one or more EXPAND or STARTLOOP instructions.
Action:

1. For every STARTLOOP instruction on the 1list I1,
£ill in literal 1 as its fifth operand, and the
address of a newly-allocated memory cell as its
fourth operand.

2. Release all instructions on the 1list I1 for

execution on level 7.

<block.I1>» z2:= BEGIN <block head>» <statement 1list.I1> END

Ho Action.

<block head> 2:= <declaration>

No action.

<block head> z2:= <block head> <function defn>

Ho Action.

<declaration> ::= DECLARE <name list> ;
This reduction is never seen by the parser beciuse

it is filtered out by the scanner.

- 111 -

<declaration> ::= DECLARE <name list>, FUNCTION <name list>:
This reduction is never seen by the parser because

it is filtered out by the scanner.

<function defn> ::= DEFINE <rame.I?> (<name 1list.I2>) :
{function body.I3> END
Definitions:

I1 is the start of a 1linked 1list of instruction
cells containing T-references bound to variables
declared inside the function, each labelled
"internal" by a code 1ian the opcode field.

I2 is the start of a 1linked 1list of instruction
cells containing the parameters of the function,
in order, each labelled "PARAMETER" by a code
in the opcode field.

I3 is the start of a 1linked 1list of instruction
cells, beginning with a T-reference 1labelled
“RESULT", followed by one or wmore instructions,
some of which may be EXPAND or STARTLOOP,

Action: Link lists 11, I2, and I3 together to form a

single list beginning at Ift.

<function defn> ::= DEFINE <name.I1> ; <func;ion body.I2> END
Definitions:

I1 is the start of a 1linked 1list of instruction

cells containing T-references bound to variables

declared inside the function, each labelled

- 112 -

“internal®™ by a code in the opcode field.

I2 is the start of a 1linked 1list of instruction
cells, beginning with a T-reference labelled
WRESULT", folloved by one or more instructions,

some of which may be EXPAND or STARTLOOP.

Action: Link 1lists I1 and 12 together to form a

single list beginning at I1.

<name list> z:= <name>

This reduction is never seen by the parser because it is

filtered out by the scanner.
<name list> ::= <name list> , <name>
This reduction is never seen by the parser because

it is filtered out by the scanner.

<function body.I1> ::= <declaration> <statement 1list.I2>

<expr.T3.1I4>
Into a newly-allocated instruction cell 11,
place the reference T2, with the label WRESULT®

in the opcode field. Link the instruction lists
beginning at I2 and I4 together to form a single 1linked

i1ist beginning with the new cell I1.

<function body.I1> ::= <statement 1list.I2> {expr.T3.I4>
Into a newly—-allocated instruction cell I1,

place the reference T2, with the label “RESULT"

- 113 -

in the opcode field. Link the instruction
beginning at I2 and I4 together to form a single

list.beginning with the new cell I1t.

<function body.I1> ::= <Lexpr.T2.I>

lists

linked

Into a newly-allocated instruction cell I1, place the

reference T2, with the label '"result" in the
field. Link onto the new cell I1 the instructi

beginning at I3, forming a single linked

{statement list.I1> 3:= <stateument.I1>

No Action.

opcode
on list

list.

<statement list.I1> ::= <statement list.I1> <statement.I2>

Link the list of instructions starting at I2 o

end of the 1list of instructions starting

<statement.I1> 2:= <block.It>
No action.
<{statement.I1> 2:= <loop.I1T>

No action.

{statement.I1> ::= READ <read list.I2> ;

1

1. Scan the 1list I2 and find all cells
BITERANTY,

2. Emit the following instruction (not on the

nto the
at It.
labelled

list) s

3.

~ 114 -

EXPAKD 12
Set the 'statenment link® field of the new
instructiop to %none®, ‘Use all H“ITEBRANT"™ T- oOC
M-;eferences found in step 1 as dummy operands of
the EXPAND instruction (up to three operands) .,
Set the reference I1 in the new TSU symbol to the

address of the newv EXPAND instruction.

<statement.I1> 3= WRITE <vwrite list.I2> ;

1.

Scan the 1list 1I2 and find all «cells 1labelled
WITERANT®,

Emit the following instruction (not on the 1list):

EXPAND 12

Set the "statement link" field of the new
instruction to Ynone". Use all “ITERANT"™ T- ér
M-references found in step 1 as dummy operands of
the EXPAND instruction (up to three operands).
Set the reference I1 in the nev TSU symbol to the

address - of the new EXPAND instruction.

<statement.I 1> ::= <left part.T2.I3> IS TUPLE

{
1.

2.

<num expr.,T4.I5> P <nun expr.T6.I7> j
Emit TUPLE T2,Tu4,T6 |

Link instruction lists I3, 1I5, and I7 (if any)
together to form a single list starting at I3. Add
the newly emitted TUPLE instructions to this 1list,
Scan the list and find all cells labelled

“ITERANTY,.

- 115 -

3. Emit the following insttuction (not. on the list):
EXPAND I3

Set the "statement link" field of the new

instruction to ‘"none". Use all “ITERANT" T- or

M-references found in step 2 as dummy operands of

the EXPAND instruction (up to three operands) .

4. Set the reference I1 in the new TSU symbol to

the address of the new EXPAND instruction.

{statement.I1> ::= <left part.T2.I3> & <expr.T4.I5> s
Definitions:

T2 is the tag or memory address to which the
assignment is to be made.

I3 is the start of a 1list of instructions emittel
during the parsing of <left partf.

T4 is the tag or memory address which is to be
assigned.

I5 is the start of a list of instructions which
define T4. The instruétion wvhich actually
assigns a value to T4 is the first instructibn
on the 1list, and T4 1is 1its first operand.

Action:

1. If the 1list IS exists, change the first
operand of instruction I5 from T4 to T2.
Otherwise, emit the instruction ASSIGN T2,TU

at some location IS.

4.

- 176 -

Link the lists I3 and IS (if any) together to
form a lingle list starting at 1I3. Scan this
list and find all <cells labelled "“ITERANT®.
Emit the following instruction (not on the list):
EXPAND I3

Set the "statement 1link" field of the new
instruction to "none". Use all "ITERANT" T- or
N~references found in step 2 as dummy operands
of the EXPAND instruction {up to three
operands) .

Set the reference I1 in the new TSU symbol to

the address of +the new EXPAKD instruction.

{read 1list.I1> ::= <read atom.Il1>

No Action.

<read 1list.I1> :z2:= <read list.It> v <read atom.I2>

Link the instruction list starting at I2 onto the end of

the instruction list starting at If,

<read atom.I1> 3= (<left part.T2.I3> , <num expr.T4.I5>)

1.
2.

Emit

Link

READ T2,T4

the instruction lists starting at I3 and 1I5

together with the new READ instruction to form a

linked list starting at I1.

- 117 -

<write list.I1> ::= <Kvwrite atom.IT>

No Action.

{urite 1ist.I1> 1:= <write 1list.I1> , <write atom.I12>
Link the instruction list starting at I2 onto the end of

the instruction list starting at It.

<write atom.I?®> ::= (<expr.T2.I3> , <num expr.T4,IS5>)
1. Emit WRITE T2,T4 .

2. Link the instruction lists starting at I3 and IS5

together with the new WRITE instruction to form a

linked list starting at I1.

<left part.M1> ::= <name.M1>

No action.

<left part.T1> z2:= <bounded left part.T1>

No action.

<left part.T1> ::= <unbounded left part.T1>

No action.

- 118 -

<bounded left part.T1> ::= <name.M2> <subscript.T3>
OF <num expr.Tu>
Place the number 0 in a newly-allocated memory
cell Mp and mark it ready on level 7.
Emit TUPLE M2,Mp, T4
INSERT T1,M2,T3

Normal instruction chaining.

<bounded left part.T1> ::= <nane.M2> <subscript;T3> OF
(<num expr.T4> , <num expr.TS>)
Emit TUPLE M?,Tu,TS
INSERT T1,42,T3

Normal instruction chaining.

<bounded left part.T1> 3:= <bounded left part.T2>
<subscript.T3> OF <num expr.Ti>
Place the number 0 in a newly-allocated memory
cell Mp and mark it ready on level 7.
Emit TUPLE T2,Mp,T4
INSERT T1,T2,T3

Normal imstruction chaining.

<bounded left part.T1> ::= <bounded left part.T2>
<{subscript.T3> OF (<num expr.Ti4> , <num expr.T5>)
Emit TUPLE T2,T4,TS
INSERT T1,T2,T3

Normal instruction chaining.

- 119 -

<unbounded left part.T1> ::= <leader.T2> <{subscript.T3>

Emit INSERT 7T1,T72,73

Normal instruction chaining.

<leader.M1> :=2:= <name.M1>

Ho action,

<leader.T1> ::= <leader.T2> <subscript.T3>
Emit SuB T1,T2,T3

Normal instruction chaining.

<loop.I1> 3z:3= FOR <name.l2> < <num expr.T3.14>

<npum expr.T5.16> UNTIL <num expr.T7.18>

<init.Y9%9.I10> ; <statement list.I11> END

Definitions:

I9 is the beginning of a list of instructions

no unallocated (T-reference) operands.

STEP

DO

having

The

instructions initialize all INITIAL variables of

the loop, and, when this 1is conmnplete,

define

some memory cell Mp. Mp is the first operand of

the first instruction on the

list.

I10 is the beginning of a list of all M-references

appearing in the initialization statement, in

cells labelled "DOUBLE"™, and other M-references

used in the initialization process,

labelled “STARTUPY,

cells

I

Action:

1.

2.

3.

- 120 -

is the beginning of a 1list of EXPAND and
STARTLOQP instructions which point to all code

for the loop.

Replace all T-references appearing on 1lists Iu,
16, and I8 with newly-allocated M-references.
(Note: if any of these lists do not exist, then
the corresponding T-reference T3, T5, or T7 will
instead be an M-reference, which we will refer
to as M3, M5, or MT7.)
Add all M-references newly allocated in step 1
to the list 110, in <cells labelled "“STARTUPY,
Add the instruction ASSIGN 42,43, (Mp) to the
linked list at I9, where M3 is the M-reference
substituted for T3 in step 1, and H#p is the
first operand of the first instruction of the
list I9.
Link the lists I4, 16, and I8 (if any) onto the
end of the list I9.
Add the following instructions to the list 1I9:
TEST MHr,M2,M7,H5
UPDATE I11,I10,Mr,_,_,N2,H45,17
vhere Mr is newly allocated and N5 and M7 are
the MN-references substituted for TS5 and T7.
Emit the following instruétiod {not on any list):
STARTLOOP I11,I10,I9,_,_ .

Place I1, the address of the new STARTLOOP

- 121 -

instruction, into the new TSU symbol.

7. Add M2 and Mr to the linked 1list of references
at I10, in cells labelled "STARTUP",

8. For each STARTLOOP instruction on the 1list TI11,
place the second operand of the STARTLOOP
instruction on the list 110, ip a cell 1labelled
“NESTED".

9. For each LEXPAND instruction on the 1list 1I11,
scan the instructions on the 1list ©pointed to
by the first operand of the LEXPAND instruction.
Add to the list 110, in cells 1labelled *®LOCAL",
all M-references appearing as output operands
of scanned instructions, except those already

labelled “"DOUBLEY,

<loop.I1> 2= FOR <name.M2> «~ <num expr.T3.14>
UNTIL <num expr.T5.I6> DO <init.I7.18> ;
<statement list.I9> END
Definitions:

I7 is the beginning of a list of instructions having
no unallocated (T-reference) operands. The
instructions initialize all INITIAL variables of
the loop, and, when this 1is complete, define
some memory cell HMp. MNp is the first operand of
the first instruction on the list.

I8 is the beginning of a 1list of all M-references

appearing in the initialization statement, in

I9

Action:

1.

2.

4.

- 122 -

cells labelled "DOUBLEY™, and other H-references
used in the initialization process, in cells
labelled "STARTUPY,

is the beginning of a 1list of EXPAND and
STARTLOOP instructions which point to all code

for the loop.

Replace all T-references appearing on 1lists I
and i6 with newly-allocated M-references,
{Note: if any of these lists do not exist, then
the corresponding T-reference T3 or T5 will
instead be an M-reference, which w2 will refer
to as M3 or M5.)

Add all M-references newly allocated in step 1
to the list I8, in «cells labelled "STARTUP".

Add the instruction ASSIGN M2,M3, (Mp) to the

idinked list at I7, where M3 is the M-reference

substituted for T3 in step 1, and Mp is the
first operand of the first instruction of the
list 1I7.
Link the lists I4# and 1I6 (if any) onto the
end of the list 17.
Add the following instructions to the 1list 1I7:
<= HMr,H2,H85 |
UPDATE I9,I8,Kr,_,_,M2,Mt,N5
vhere Hr is newly allocated, M5 is

the M-reference substituted for TS5, and Mt |is

- 123 -

a memory cell which is newly allocated, set

equal to 1, and marked ready on level 0.

6. Emit the following instruction (not on any list):
STARTLOOP I9,18,I7,_,_ .

Place 1I1, the address of the new STARTLOOP

instruction, into the new TSy symbol,

7. Add M2 and Mr to the linked 1list of references
at 18, in cells labelled "STARTUP".

8. For each STARTLOOP instruction on the 1list 1I9,
place the second operand of the STARTLOOP
instruction on the list I8; in a cell labelled
“"NESTED".

9. For each LEXPAND instruction on the 1list 1I9,
scan the instructiops on the 1list pointed to
by the first operand of the LEXPAND instruction,
Add to the list I8, in cells 1labelled "LOCAL",
all M-references appearing as output operands
;pf scanned instructions, except those alr=ady

labelled “DOUBLE"™,

<loop.I1> ::= WHILE <num expr.T2.I3> DO <init.I4.I5> ;
<statement list.I6> END
Definitions:
I4 is the beginning of a list of instructions having
no unallocated (T-reference) operands. The
instructions initialize all INITIAL variables of

the loop, and, when this ié conplete, define

- 124 -

some memory cell Mp. Mp is the first operand of
the first instruction on the list,

I5 is the beginning of a 1list of all H-references
appearing in the initialization statement, in

’cells labelled *DOUBLE", and other M-references
wsed in the initialization proqeés, in cells
labelled "STARTUP™.

I6 is the beginning of a 1list of EXPAND and
STARTLOOP instructions which point to all code
for the loap.

Actions

1. Link onto the end of the list starting at I4 a
new copy of all the instructions on the linked
list starting at I3. In the newly-copied
instructions, replace all T-references by
nevwly-allocated M-references. {Note: If the
list I3 does not exist, the symbol <num expr>
Qill contain some M-reference Ms: <num expr.Ms>
In this case, allocate a new menmory cell M2, and
place in some location, which we will call I3,
a nev instruction ASSIGN M2,Hs o}

2. Add all H#-references newly allocated in step 1
to the list IS,. in cells labelled "STARTUP".

3. Add the following instructions to Vthe linked
list starting at I4:

ASSIGHN ﬂr,l’iZ, {Mp)

REPEAT I6,IS5,Mr,_,_,I3

4.

5.

- 125 -

where Mr 1is nevwly ailocated, M2 is the
M-reference substituted for T2 (or the output
operand of the newly-generated ASSIGN
instruction) in step 1, and Mp is the first
operand of the first instruction of the list I,
Emit the following instruction (not on any list):
STARTLOOP I16,I5,1I4, ,_ .
Place 111, +the address of the new STARTLOOP
instruction, into the new TSU symbol.
Add ¥r to the linked list of references at 1I5,
in a cell labelled "STARTUP".
For each STARTLOOP instruction on the 1list 716,
place the second operand of the STARTLOOP
jinstruction on the list I5, in a cell 1labelled
"NESTED".

For each LEXPAND instruction on ¢the 1list 1I6,

scan the instructions on the list pointed to by

the first operand of the LEXPAND instruction.
Add to the list IS5, in cells 1labelled "LOCAL",
all M-references appearing as output operands
of scanned instructions, except those already

labelled "DOUBLE".

<init.T1.I2> ::= INITIAL <init atom.I1.I2>

- No Action.

- 126 ~

<init.I1.I2> ::= <init.I3.I4> ,
Definitions:
I5 is the start of a

wvhich initialize sone

being initialized is the

first instruction of

contains no unallocated

linked list

<init atom.IS5.I6>

of instructions

variable. The variable

first operand of the

the list. The list

T-references.

I6 is the start of a linked list of all H-~references

used in initializing the wvariable, in cells

labelled "startup', and the variable itself, in

a cell,labelled “"double".
Action:

1« Emit NOP Mp,Mr,Ms where Mp is newly allocated,

and Mr and Ms are the first operands of

instructions I3 and 15, respectively.

2. Form the mnew NOP instruction, together with

‘linked lists starting at I3 and IS5, into a new

linked list starting at cell 1I1, with the new

NOP at the head of the list.

3. Llink lists starting at I4% and I6 into a new

dinked list starting at I2. Aadd to this list

Mp, the new M-reference allocated in step 1, in

a cell with the label "startup"” in the opcode

field.

<init at

1.

2.

3.

4.

5.

{expr.T1?

- 127 -

om.I1.I2> ::= <name.M3> &« <expr.T4.I1>

Place the reference M3 in a cell I2, with the 1label
“DOUBLE™ in the opcode field.

Allocate a new memory cell and place its address in
the *OLDY" field of the cell M3,

In the instruction I1, change the first operand from
T4 to K3. 1If the instruction I1 does not exist,
emit the instruction ASSIGN M3,T4 in location I1.
Allocate a memory cell for each T-reference on the
instruction list beginning at I1, and replace the
T-references by the new M-references.

Add all the M-references newly allocated in step 4
to the list starting at I2, one per cell, with the

label "startup" in the opcode field.

> ::= <num expr.T1>

No action.

<expr.T1
Emit

> 2:= <expr.T2> WITH <num expr.T3> & <num expr.TU>

WITH 7T1,T2,73,T4

Normal imstruction chaining.

<num expr.T1> ::= <logical expr.T1>

No action.

- 128 -

~

<num expr.T1> s:= IF <num expr.T2> THEN <num expr.T3> ELSE
<num expr.Ti>
Emit IF T1,72,T73,TH

Normal instruction chaining.

<logical expr.T1> ::= <logical term.T1>

No Action.

<logical expr.T1> ::= <logical expr.T2> OR <logical term.T3>
Emit OR T1,T2,T3

Normal instruction chaining.

<logical term.T1> z:= <logical factor.T1>

No Action.

<logical term.T1> ::= <logical term.T2> AND <logical factor.T3>
Emit AND T1,T2,T3

Normal instruction chaining.

<logical factor.Ti1> ::= <relation.T1>

No action.

'<logical factor.T1> s:= NOT <relation.T2>
Emit NOT T1,T2

Normal instruction chaining.

- 129 -

<relation.T1> ::= <arith expr.T1>

No action.

<relation.T1> z:= <arith expr.T2> <arith expr.T3>
Emit = T1,72,T3

Normal imstruction chaining.

<relation.T1> ::= <arith expr.T2> -~= <arith expr.T3>
Emit =~= T1,T2,T3

Normal instruction chaining.

<relation.T1> s:= <arith expr.T2> < <arith expr.T3>
Emit < 1T%,T2,73

Normal iastruction chaining.

<relation.T1> 3:= <arith expr.T2> <= <arith expr.T3>
Enit <= T1,72,7T3

Normal instruction chaining.

<relation.T1> ::= <arith expr.T2> > <arith expr.T3>
Emit > T1,T2,T3

Normal instruction chaining.

<relation.T1> 2:= <arith expr.T2> >= <arith expr.T3>
Emit >= T1,T72,7T3

Normal imstruction chaining.

- 130 -

<arith expr«Ti1> z2:= <térm.T1>

No Action.

<arith expr.T1> z2:= - <term.T2>
Emit NEG T1,T2

Normal instruction chaining.

<arith expr.T1>» s:= <arith expr.®2¥ ¢ <térm.T3>
Emit ¢+ T4Y,T2,T3

Normal instruction chaiming.

<arith expr.T1> 2:= <arith expr.T2> - <term.T3>
Emit - T1,T72,T3

Normal instruction chaining.

<term.T1> ::= <factor.T1>

¥No Action.

<term.T1> s:= <téefm.T2> * <factor.T¥>
Emit * T1,7T2,T3

Normal instruction chaining,

<term.T1> ::= <tern.T2> / <factor.T3>
Emit / T1,T2,T3

Normal instruction chaining,

- 131 -

<term.T1> z::= <term.T2> MOD <factor.T3i>
Emit MOD T1,T2,T3

Normal instruction chaining.

<factor.T1> ::= <quantity.T1>

No action.

#

<factor.T1> 2:= FIRST <quantity.T2>
Emit FIRST T1,T2

Normal instruction chaining.

<factor.T1> ::= LAST <quantity.T2>
Emit LAST T1,T2

Normal instruction chaining.

<factor.T1> ::= ROUND <quantity.T2>
Emit ROUND T1,T2

Normal imstruction chaining.

<factor.T1> ::= FLOOR <quantity.T2>
Emit FLOOR T1,T2

Normal instruction chaining.

<factor.T1> ::= CEIL <quantity.T2>
Emit CEIL T1,T2

Normal instruction chaining.

- 132 -

<factor.T1> ::= ABS <quantity.T2>
Emit ABS T1,T2

Normal instruction chaining.

<factor.T1> ::= ¢ <quantity.T2>
Emit SUM T1,T2

Normal instruction chaining.

{factor.T1> ::= * {quantity.T2>
Emit PROD T1,T2

Normal instruction chaining.

<factor.T1> ::= AND <quantity.T2>
Emit TAND T1,T2

Normal instruction chaining.

<factor.T1> 2:= OR <quantity.T2>
Emit TOR T1,T2

Normal instruction chaining.

<factor.M1> 2= <aumber.M1>

No action.

<factor.T1> ::= <unlabelled tuple.T1>

No actione.

- 133 -

<quantity.T1> ::= <primary.T1>

No action.

<quantity.T1> ::= <tuple element.T1>

No action.

<primary.M1> z:= <name.N1>

No action.

<primary.®1.12> 2:= ' <name.N1> ¢
The address M1 is entered into an instruction
cell and marked "ITERANT":; the address of this cell

becones 12,

<primary.Ti1> z2:= OLD <name.M2>
Emit OLD T1,M2 .,

Normal instruction chaining.

<primary.T1> 2:= <function call.T1>

No action.,

.<primary.T1> s:= (<expr.T?1>)

No action.

- 134 -

{primary.M1> =:= NIL
A memory cell M1 is allocated.
However, no value will ever be assigned to this cell,
so it will never become ready, and no instruction

depending on this cell will ever be executed.

{primary.Mi1> 3:= TRUE
Allocate a nev menmory cell M1, setkits value

to -1, and mark it ready on level 7.

<primary.M¥1> ::= FALSE
Allocate a nev memory cell M1, set its value

to 0, and mark it ready on level 7.

<function call.T1> z2:= <name.I2> { <simpie tuple.T3>)
Emit CALL T1,1I2,T3

Normal instruction chaining.

<tuple element.T1> ::= <primary.T2> <subscript.T3>
Emit SUB T1,T2,T3

Normal instruction chaining.

<tuple element.T1> ::= <tuple element.T2> <subscript.T3>

Normal instruction chaining.

- 135 -~

<subscript.T1> ::= | <primary.T1>

No Action.

<subscript.T1> :1:= | <number.M2>
Emit ROUND T1,M2

Normal instruction chaining.

<unlabelled tuple.T1> ::= < <simple tuple.T1> >

No action.

<unlabelled tuple.T1> ::= < <tuple specifier.T1> >

No action,

<unlabelled tuple.¥1> ::= < >
Place in a newly-allocated memory cell M1 the
representation of a null tuple. Mark this cell

ready on level 7.

<simple tuple.T1> ::= (expr;T2>
1. Allocate three new memory cells Mp, Hr, and Us,
place the number 0 in each of them, and mark thenm
all ready on level 7,
2. Emit TUPLE T1,Mp,lr
INSERT T2,T1,8s

Normal instruction chaining.

- 136 -

-~

<simple tuple.T1.I2> ::= <sinmple tuéle.T1.12> ¢ <expr.T3.I4>
1. Instruction cell I2 contains an instruction
TUPLE T1,Mp,Hr.

Read the content of memory cell Mr. Increment its
content by one. In addition, allocate a new memory
cell Mt, place in it a constant equal to the
incremented value af Mr, and mark it ready on level
7.

2. Emit INSERT T3,Ti,Ht

Normal instruction chaining.

<tuple specifier.T1> z:= <num expr.T2> TO <num expr.T3>
1. Place the number 1 in a newly-allocated menmory
cell Mp and mark it ready on level 7.
2. Emit TOBY T1,72,T3,Mp

Normal instruction chaining.

<tuple specifier.T1> ::= <num expr.T2> TO <num expr.T3>
BY <num expr.T4>
Emit TOBY T1,T2,73,T4

Normal imstruction chaining.

- 137 -

APPENDIX B

DESCRIPTIONS OF MACHINE INSTRUCTIOHNS

The 48 instructions are 1listed and described below.
Before any instruction 1is released for execution, all
T-reference operands will have been replaced by M-references.
The reference types of the. operands must match those in
the instruction descriptions below.

If, during processing of any instruction, a process;r
detects an anowmalous condition (wrong type operangd,
overflow, etc.), all output operands of the instruction are
set to the special value UNDEFINED, If any instruction
encounters UNDEFINED as an input operand, all its output
operands are set to UNDEFINED.

In the descriptions below, "input cells™ are menmory
cells which must be ready on the same level as the
instruction, or on a lower level, before the instruction can
be executed. "Output cells"™ are memory cells which the
instruction makes to be ready on the same level as the
instruction.

Occasionally an instruction will be written with some of
its operands in parentheses. These operands are dummy
operands, which do not participate in execution of the
instruction, but which must be ieady before the instruction

can be executed. For exanmple, the instruction

ASSIGN M1,M2, (M3)

- 138 -

assigns the value of M2 to M1 as soon as both M2 and M3 are
ready.

The instructions STARTLOOP, UPDATE, and REPEAT have more
than four qperands each, Hence, each of these instructions
occupies two consecutive cells in the IS. To allocate space
for such an jinstruction, a processor must allocate two cells
at once. To read such an instruction, two Instruction Read
{IR) requests are needed. However, these instructions have
input operands only among their first four operands.
Therefore, the readiness~testing portions of the Readiness
Boutine and the Instruction Generate Routine need only deal
with the first cell of the double-cell instruction, as
usual. The operand "link" fields and "statement link"” field
of the second cell are not used. Because the Ready LIST HAS
room for eight operands per instruction, only a single
Readylist Add (RA) or Readylist Fetch (RF) regquest is needed

for a double-length instruction.

& SUM EXPAND
- PROD LEXPAND
* TAND CALL

/7 TOR STARTLOOP
HOD ESUH UPDATE
AND EPROD REPEAT
OR ETAND OoLD
ROUND ETOR NOP
FLOOR ASSIGHN STEP
CEIL TOBY TEST
HEG INSERT

ABS TUPLE

NOT SUB

= FIRST

g2z LAST

> IF

p 2 HITH

< READ

<= WRITE

- 139 -

INSTRUCTION DESCRIPTIONS

@ M1,M2,M3 where @ is one of ¢, -, *, /, MOD, AND, OR

Input cells: M2,M3; Output cell: A1

If M2 and M3 are both numbers, the number M2 @ M3 is
placed in M1. ©Note that this result need not be an

integer even if M2 and M3 are integers.,

If M2 is a tuple and M3 is a number, M1 is made to be a
tuple with "first" and %"last" fields equal to those of
n2, and “"start" field pointing at a newly-allocated
block of cells. A new set of instructions] Mi,Mj,M3
is enmitted and released for execution, where Mj = each
element of M2, and Mi = the corresponding element of the

newly-allocated block.

If 83 is a tuple and M2 is a number, M1 is made to be a
tuple with "first"™ and "last" fields equal to those of
M3, and “start" field pointing at a newly-allocated
block of cells. A new set of instructions ? Mi,M2,M475
is emitted and released for execution, where Mj = each
element of M3, and Mi = the corresponding element of the

nevly-allocated block.

If M2 and M3 are both tuples, M1 is made tq be a tuple
with "first" and "last® fields equal to those of M2 and

M3, and “"start" field pointing to a newly-allocated

%

o}

- 140 -

-~

block of cells. (If M2 and M3- do not have identical
"first® and "last" fields, M1 becomes UNDEFINED.) A new
set of instructions & Mi,Mj,Mk is emitted and releasei
for execution, where HMj and Mk are corresponding
elements of M2 and M3, and Hi 1is the corresponding

element of the newly-allocated block.

M1,M2 where % is one of ROUND, FLOOR, CEIL, NEG, ABS, NOT

Input cell: M2; Output cell: H1

‘'If n2 is a number, the number % (M2) is placed in H1.

If M2 is a tuple, M1 is made to be a tuple with "first"®
and ®last" fields equal to those of M2, and "start" field
pointing at a newly-allocated block of cells. A new set
of instructions % Mi,Mj] is emitted and released for
execution, wvhere Hj = each element of M2, and Mi = the

correspanding element of the newly-allocated block.

Mi,82,43 where ? 1is omne of =, =-~=, >, >=, £, (=

Input cells: M2,M3; Output cell: Possibly 41

If K2 and K3 are both numbers, the value of the relation
42 ? M3 '{(TRUE or FALSE) is placed in H1. (Logical values

have type “number"; TRUE = -1 and FALSE = 0.)

- 141 -

~

If only one of M2 and M3 is a tuple, the value FALSE is
placed in M1, unless ? is ~= , In this case, TRUE |is

placed in M1,

If both M2 and M3 are tuples, their "first" and "last"
fields must be identical, or else FALSE is placed in H1
{except if ? is ~= , TRUE is placed in M1), 1If the fields
match, a memory allocation request is made for a connected
group of cells equal to the number of elements in H2.

Then the following new instructions are emitted 1into

the IS and released for execution:

? Mi,Mj,Mk where Mj and Mk are corresponding elements of
tuples M2 and N3, and Mi is the corresponding cell in
the newly-allocated block.

ETAND M1,Mp,Lq where Mp is the starting address of the
newly-allocated block, and Lg is the number of cells
in the block. (Exception: if 2 1is =, emit

ETOR M1,Mp,Lg.)

M1,M2 where # is one of SUM, PROD, TAND, TOR

Input cell: M2; Output cell: None.

If M2 is not a tuple, M1 becomes UNDEFINED. Othervise,
the instruction X M1,Mp,Lq is emitted and released for
execution, where Mp = the "start® field of M2,
Lqg is a diteral equal to the number of elements in M2,
and X is ESUM, EPROD, ETAND, or ETOR, depending on

whether # is suM, PROD, TAND, or TOR.

- 142 -

i

$ ®¥1,M2,L3 where $ is one of ESUM, EPROD, ETAND, ETOR

Input cell: M2; Output cell: possibly M1

M2 is +the first of a connected group of L3 cells
which are to be combined 'by the operator +, *, AND,

or OR, leaving the result in M1.
If L3 is 0, 0 is placed in H1.

If L3 is 1, the content of M2 is placed in M1, If M2
is not ready, the instruction ASSIGHN M1,M2 is

enitted and released for execution.

If L3 is 2, the contents of M2 and M2+1 are read,
combined by the operator ¢, L AND, or OR
{depending on the nature of $), and the result is
placed in M1. If either of cells M2 or M2+1 1is not
‘ready, the instruction X M1,M2,42¢1 is enitted
and released for execution, where X is +, *, AND,

or OR, depending on the nature of 5.

If L3 is 3 or more, two newly-allocated cells Mp and MNgq
are requested, and the following instructions are
emitted and released for execution:

X Ml,4p,Mg where X is ¢, *, AND, or OR, depenling
on $
$ Hp,M2,FLOOR(L3/2)

$ Mq,M2+FLOOR(L3/2),L3-FLOOR(L3/2)

ASSI

TOBY

- 143 -

GN M1,M2

Input cell: M2; Output cell: M1

The value of M2 is placed in M1,

M1,M2,M3,M4
Input cells: M2,M3,MU4; Output cells: M1 and all neswly

allocated cells.

42, M3, and H4 must be numbers. A complete tuple is
created in memory cell M1, beginning with the number in
M2 and continuing to the number in M3 by increments of
M4, The "first®", "last", and "start" fields of N1 are
filled in, and M1 |is marked .ready. Cells are
allocated, defined and made ready for all elements of

the tuple.

INSERT H1,H2,M3

Input cellsz M1,M2,M3; Output cell: the newly-defined

element.

M2 must be a tuple. M3 must be a number. M1 is entared
as element M3 of the tuple HN2. Note that element M3
need not be the M3th element of the tuple if the Yfirst"

field of M2 is not 1.

- tuy -

TUPLE M1,H2,M3

SUB

Input cells: M2,M3; Output cell: M1

42 and M3 must be numbers. The cell M1 is examined; if
this cell is already marked ready on the 1level of the
TUPLE instruction, no action is taken. Otherwise, M1 |is
made to be a tuple. The value of M2 is Aplaced in its
#first” field, and the value of HM3 1is placed 1in its
“"last" field. An area of free memory containing
(M3}~ (M2)+1 cells is allocated, and the "start" field of

M1 is set to point at the first cell of this area.

M1,M2,83

Input cells: M2,M3; Output cell: Possibly M1

82 must be a tuple, and M3 nmust be a number.
If element M3 of tuple M2 is ready, it is placed in M1,
Otherwise, the instruction ASSIGN H1,Mp is enitted
and released for execution, where Mp is the address of

element M3 of tuple M2,

FIRST M1,H2

Input cell: 12; Output cell: H1

M2 must be a tuple. M1 is made to be a number, and set

equal to the "first" field of M2.

LAST

IF

WITH

- 145 -

1,42

Input cell: M2; Output cell: N1

H2 must be a tuple. M1 is made to be a number, and set

equal to the "last" field of M2.

Mi,n2,M3,M4

Input cells: M2,M3,M4; Output cell: M1

M2 must be a nunmber.
If M2 is true (negative), the value of M3 is placed in H1.
If M2 is false (non-negative), the value of MU is placed

in M1,

M1,H2,M3,H4

Input cells: M2,M3; Output cell: 1

M2 must be a tuple. M3 must be a number representing
a valid subscript in the tuple M2. M1 is made to be a
tuple with "first" and "last" fields equal to those of
M2, and "starf" field pointing to a newly-allocatel
block of cells. All the following new instructions
are emitted and released for execution:

ASSIGN Mi,Mj where Mj = each element of tuple M2
except element M3, and Mi = the corrasponding
elenent of the newly-allocated block.

ASSIGN Mk,M4 where Mk = element M3 of the newly-

allocated block.

READ

HRIT

- 146 ~

Input cell: M2; Output cell: Mt and possibly other,

nevly~allocated cells.

M2 contains an integer value, The input medium is
scanned, and the input gquantity associated with this
integer is obtained, and loaded into M1, If the input
quantity is a tuple or a nested tuple, new memory cells
are allocated and loaded with the tuple elements of the

input quantity.

E H1,R2

Input cells: K1, M2; Output cell: None.

The content of cell M1 is transmitted to the output
nedium, and made to be associated with the integér
value in M2. TIf M1 is a tuple, all its -element values
to arbitrary levels of nesting are transmitted, with
appropriate notations to indicate nesting. If sone
element or elements, M3 and N4, of the tuple structure
of K1 are not ready, no values are transmitted to the
output pediunm, but instead a new instruction
WRITE H1,M2,(H43),(44) 1is emitted, having wup to two

of the non-ready elenments as dunmy operands,

- 147 -

EXPAND I1

No input or output cells.

I1 is the address of the first of a linked list of
instructions, linked together by their “statemeant 1link"
fields. Among these instructions, not necessarily at
the head of the list, may be sone ihstructions 'having
the special opcode “ITERANT" and an M-reference as
first operand. These M-references will be referred to
as iterants. Duplicate iterant references may occur on
the list, and should be ignored. The following |is
done:
1. First, all iterant M-references are read. If any
iterant is not ready, no action is taken except that
a new 1instruction EXPAND 11, (x), {My), (M2z2) is
emitted and released for execution, having as dummy
operands all the non-ready iterants (up to 3).
2, If all iterants are ready, the processor constructs
an internal table of ‘'spans" having an entry for
every T-reference appearing in the 1linked 1list of
instructions. For each T-reference, the iterants
(if any) which that T-reference spans are 1listed,
Any output cell of an instruction spans all iterants
spanned by any input cell of that instruction. In
addition, the first operand of an INSERT instruction
spans all iterants spanned by the second and third

operands of the INSERT instruction. All other

3.

b,

5.

- 148 -

T-references span nothing. We will say that an
instruction spans all iterants which are spanned by
any of its operands.

Memory space is allocated to the T-references in the
linked list. Each T-reference is allocated a nunber
of cells equal to the product of the numbers of
elements in all the iterant tuples which it spans.
The T-reference is replaced in all 1instructions by
this H-reference. If a T-reference spans nothing,
it is allocated one cell.

Throughout the 1linked 1list of instructions, each
iterant is replaced by an M-reference equal to 1its
“gtart® field:; that is, the address of 1its first
element.

An arbitrary ordering is defined among all tﬁe
iterants, vhich will be referred to 1in part 6.
Each instruction is replicated as many times as the
product of the numbers of elements in all the
iterant tuples which it spans. Assume a dgiven
instruction spans N iterants, and there are Mi
elements in the ith iterant. Each new copy of the
instruction is associated with a unique N-tuple
denoting an element number from 0 to Hi-1 for each
iterant spanned by the instruction. Let the N-tuple
associated with a given copy be (K1,K2,...,Kn).
Bach op2rand in the given copy has its address

modified as follows. Assune that the particular

- 149 -

operand in question spans only those iterants in a
set S. Assign to each iterant in the set S a weigﬁt
equal to the product of the numbers of elements in
all lower-ordered iterants in the set S. Let the
weight of the ith iterant be Wi. Then the address
of the operand in question is increased by the sum
over all i in S of Kiwi. Operands which span
nothing have their address copied without change.
7. All the instructions generated in step 6 are placed
in thé IS and released for execution on the same
level as the original EXPAND instruction.
By means of the above steps, each instruction in the
original linked list 1is expanded to multiple copies,
and the operands of the newly-generated copies are
adjusted to span the space over which iteration is to

OCCUr.

LEXPAND TI1,M2

No input or output cells.,

This instruction behaves exactly the same as EXPAND It,
except that, in addition to the other instructions
emitted, it emits a tree of newly-allocated NOP
instructions which define the cell M2 'to be ready as
soon as all the nevly~-created instructions have
executed. HMemory cells are allocated as needed for

the operands of the NOP instructions. All the new NOP

- 150 -

o~

instructions are released for execution on the sane

level as the LEXPAND.

CALL Mi,I2,H3

Input cell: H3; Output cell: None.

Definitions:

M1 is the address of the cell in memory to which the
value of the function is to be assigned.
I2 is the address of the function in the IS, which
consists of a list of "PARAMETER" and “INTERNALY"
.T—references, a PRESULT" T-reference, and sone
instructions which may have some T-references

as operands.
113 is the address in memory of a tuple containing
the actual parameter values of the function

call.

Actions

1o 411 instructions on the 1list 12, except the
WINTERNAL®, YPARAMETER" and ®“RESULTY cells, are
copied over to a new place in the 1IS. Also copied
over are lists which represent first operands of
EXPAND or LEXPAND instructions, or first, second, or
third operands of STARTLOOP instructions on the
list I2, or in the copied material to any levels of
nesting., In all newly-copied instructions, operand

addresses are adjusted as necessary to point to the

3.

- 151 -

newly-copied lists. Also, the link fields of newly-

copied instructions are adjusted as necessary to

preserve the linked-1list | properties of the
neyly—copied material. The following changes are
made throughout the newly-copied material:

a. Formal parameters are replaced by M-references
to the corresponding element of the tuple M3,

b, Any references to the result variable are
replaced by the HM-reference M1,

c. A unique M-reference is newly allocated for each
“INTERNAL" T-reference, and 1s substituted for
this T-reference throughout the newly-copied
instructions.

Each STARTLOOP instruction on the new copy of the

list I2 (first level only) has a newly-allocated

M~reference filled in as its fourth operand, and

receives as a fifth operand a literal -equal to one

more than the 1level of the CALL instruction.

Every instruction in the new copy of the 1list 1I2

(first level only) is released for execution on ‘the

same level as the <CALL instruction. Note that

instructions which are pointed to by first-level
instructiops are copied over but not released for

execution.

- 152 -

STARTLCOP X1,12,I3,M4,L5

No input or output cells.

Definitions:

I1 is the beginning of a linked list of LEXPAND (or
EXPAND) and STARTLOOP instructions which point
to all code for the 1loop. The code contains
m-réferences for all variables which have nanmes,
and T-references for all other,
compiler-generated variables. Each LEXPAND
instruction is missing its second operand, and
@ach STARTLOOP instruction is missing its fourth
and fifth operands.

I2 is the beginning of the update list for the 1loop.
This list may contain any of the Eollowing types
of references:

a. "DOUBLE": M-references which are
INITIALized in the loop.

b. "LOCAL": M-references which were allocated
to named variables and which are assigned
values inside the loop, except those
labelled "DOUBLE™Y,

Ce “STARTOP": MHM-references used in
initializing loop variables, which must be
marked not ready each time the ioop is
called.

d. Y“NESTED": I-réferences vhich point to the

update lists of nested loops.

- 153 -

I} is the beginning of a linked list of instructions
having no wunallocated (T-referenze) operands.
The instructions initialize the index variable
(if any) and all variables in the INITIAL
statement, then test the continuation condition
and, if it passes, issue an UPDATE or REPEAT
instruction for the loop.

M4 is a memory cell which is to be defined when all
loop iterations are complete,

L5 is a literal equal to the lexic level of the loop.

Note: Since STARTLOOP has five operands, it

occupies two consecutive cells in the Is.

Action:

1. Each STARTLOOP instruction appearing on 1list I1
has its fifth operand set to L5¢+1 (if it does
not equal this already).

2. Change the opcode of all EXPAND instructions on
the list It to LEXPAND. The second operand of
these instructions will be filled in later.

3. All "“DOUBLE" and "STARTLOOP" M-references
appearing on list I2 are marked not ready on
level LS.

4. A new copy is made of all instructions on the
list I3, and all the newly copied instructions
are released for execution on level LS. The

UPDATE or REPEAT instruction on the list I3 has

- 154 -

M4 £illed in as the fourth operand and LS as the

f£ifth operand of its new copy (not of the

original).

UOPDATE I1,12,M3,M4,L5,H46,17,H48

Input cell: M3; Output cell: possibly M4,

Definitions:
I1 is the beginning of a linked list of LEXPAND and
STARTLOOP instructions which point to all code

for the loop. The code contains #-references

for all wvariables which have namnes,

and

T-references for all other, compiler-generateid

variables. Each LEXPAND instruction missing

its second operand, and each STARTLOOP

instruction is missing 1its fourth operand.
I2 is the beginning of the update list for the 1loop.

This list may contain any of the following types

of references:

e "DOUBLE": H-references which are
INITIALized in the loop.

b. "LOCAL¥: M~-references which were allocated
to named variables and which are assigneld
values inside the loop, except those
labelled “DOUBLE".

C. "STARTUP"™: M-references used in
initializing loop variables, which must‘ be

M3

M4

LS
M6
M7

M8

- 155 -~

—~

rarked not ready 'each time the loop is
called.
d. "NESTED": I~-references which point to the
update lists of nested loops.
is a trigger cell which starts the UPDATE, If HM3
becomes TRUE, the loop should be repeated. If
M3 becomes FALSE, the loop should be terminated.
is a memory cell which is to be defined when all
loop iterations are conmplete.
is a literal equal to the lexic level of the loop.
is the index variable of the loop.
is the loop increment.

is the upper limit for the 1loop 1index variable.

Note: Since UPDATE has 8 operands, it occupies two

Action:

1.

consecutive cells in the IS,

If ®¥3 is TRUE, the following is done:
a. For every “DOUBLE"™ M-reference Mi in the
list I2, the value in Mi is placed in the
cell pointed to by the Wold" field of Mi,
and this newly-filled cell is marked ready

on level LS.
b. All "LOCAL® and "DOUBLE" M-references on the
list I2, and on all nested update 1lists to
arbitrary levels, are wmarked not ready on

level LS.

Ce

d.

- 156 -

o~

A new copy is made of all STARTLOOP and
LEXPAND instructions in the 1list 1I1, In
addition, new copies are made of all linked

lists appearing as first operands of these

"LEXPAND instructions, and the LEXPAND

operand references are adjusted to point to
the new lists. Each new copy of a LEXPAND
instruction receives a newly-allocated cell
Hj as its second operand. Each new copy of
a STARTLOOP instruction receives a
newly-allocated cell Mk as its fourth
operand. 411 the new STARTLOOP and LEXPAND
instructions are released for execution on
level L5.

Let Mj be the set of newly-allocated seconﬁ
operands of newly-copied LEXPAND
instructions. Let Mk be the set of newly-
allocated fourth operands of newly-copied
STARTLOOP instructions. Emit a tree of NOP
instructions which defines some new cell Hu
when all cells Hj and Mk are ready. Release
all the NOP instructions for execution on
level LS.

Emit all the following instructions and
release them for execution on level LS5:

STEP M6,M7,Hu,Hv

TEST Mw,M6,M8,Mv

-~ 157 =~

UPDATE II,IZ,MQ.MQ,L5,M6,M7,M8
wvhere Mv and Mw are newly-allocated «cells.
26 If HM2 is FALSE, the following is done:
a. All “DOUBLE" and "LOCAL®™ M-references on the
update list I2 and on all nested update lists
are marked ready on level L5-1.

. M4 is made TRUE and ready on level L5-1.

REPEAT I1,I2,M3,M4,L5,I6

Input cell: HM3; Output cell: possibly M4,

Definitions:

I1 is the beginning of a linked list of LEXPAND and
STARTLOOP instructions which point to all code
for the loop. The code contains MN-references
for all variables which have names, and
T-references for all other, compiler-generated
variables. Each LEXPAND instruction 1is missing
its second operand, and each STARTLOOP
instruction is missing its fourth operand.

I2 is the beginning of the update list for the 1loop.
This list may contain any of the following types
of references:

a. "DOUBLE": M-references which are
INITIALized in the loop.
b. YLOCAL®": M-references which wer2 allocated

to named variables and which are assigned

M3

My

L5

16

- 158 -

values inside the loop, except those
lahelled “"DOUBLEY,
c. "STARTUP": M~references used in
initializing loop variables, which must be
marked not ready each time the 1loop |is
called.
d. YNESTED": I-references which point to the
update lists of nested loops.
is a trigger cell which starts the REPEAT., If 3
becomes TRUE, the loop should be repeated. if
3 becomes FALSE, the loop should be terminated.
is a menmory cell which is to be defined when all
loop iterations are conmplete.
is a literal equal to the lexic level of the loop.
is the beginning of a linked list of instructions
which evaluate the continuation condition and
place the result in the T- or M-reference which
is the first operand of the first instruction of

the list. The instructions contain M-references

for all variables which have names, and
T-references for other, compiler-generated
variables.,

Note: Since REPEAT has six operands, it occupies

tvo consecutive cells in the IS.

Action:

1.

If

Qe

b.

Co

d.

- 159 -

M3 is TRUE, the following is done:
For every YDOUBLE" HM-reference Mi in the
list 12, the value in Mi is placed in the
cell pointed to by the "old" field of Mi,
and this newly-filled cell is marked ready
on level LS.

All "LOCAL"™ and "DOUBLE" M-references on the
list I2, and on all nested update 1lists to
arbitrary levels, are marked not ready on
level LS.

A nevw copy is made of all STARTLOOP and
LEXPAND instructions in the 1list I1. In
addition, new copies are made of all 1linked
lists appearing as first operands of thesé
LEXPAND instructions, and the LEXPAND
operand references are adjusted to point to
the new lists. Each nev copy of a LEXPAND
instruction receives a newly-allocated cell
Mj as its second operand. Each new copy 6f
a STARTLOOP instruction receives a
newly—-allocated cell Mk as its fourth
operand. All the new STARTLOOP and LEXPAND
instructions are released for execution on
level L5,

Let Mj be the set of newly-allocated second

operands of newly-copied LEXPAND

£f.

- 160 -

instructions. Let Mk be the set of newly-
allocated fourth operands of newly-copied
STARTLOOP instructions. Emit a tree of NOP

instructions which defines some nevw cell Mu

when all cells Mj and Mk are ready. Release

all the NOP instructions for execution on
level L5.
ake a new copy of all instructions on the
list I6. Allocate a new HN-reference for
every T-reference appearing on the 1list 1I6
and replace each T-reference with its
newly-allocated M-reference in the new copy.
Release all the newly-copied instructions
for execution on level LS.
Emit the following instructions and release
then for execution on level L5:
ASSIGN Hw,Mv, (Hu)
REPEAT IX1,I2,Mw,MU,L5,I6
where My is the M-reference allocated in
step {e) for the first operand of the first
instruction of the 1list 1I6, and Mw is 13
nevly—-allocated cell.

M3 1is PFALSE, the following is done:
All "DOUBLE" and YLOCAL" M-references on the
update list I2 and all nested update lists
are marked ready on level L5-1.

M4 is made TRUE and ready on level LS-1.

- 161 -~

OLD M1, M2

Input cells: none; Output cell: possibly M1

The cell M2 is examined to find the address Mp in its

YOLD" field. If memory cell Mp is ready, its

value 1is

placed in M1. If not, the instruction ASSIGN M1,Mp

is emitted and released for execution.,
NOP M1,M2,M3,Hl4
Input cells: M2,H3,M4; Output cell: M1

M1 1is defined to be ready and true when

M2,M3,H4 are ready.

STEP M1,M2,M3,M4

Input cells: M1,4M2,M3; Output cells: M1, MU

The content of M2 is added to the content of M1

all of

and the

result is left in M1, M3 is a dunmy vhich triggers the

step. MU is set to the same value as M2 after

is complete. M4 serves as a dummy variable to

other instructions.
TEST M1,82,H83, M4
Input cells: M2,M3,M4; Output cell: M1

If ¥4 >= 0, this instructidn behaves 1like <«(=

If M4 < 0, this instruction behaves 1like >=

the step

trigger

M1,M2,M43.

- 162 -

APPENDIX C

IBM SYSTEN/360 MATRIX MULTIPLICATION PROGRAY

The following program, written in IBH System/360
Assembler Language {23) {(25), multiplies together two square
2 X 2 matrices. The operand wmatrices are aséumed to be
stored in row-major order in the storage areas labelled &
and B; the product mat:ix is left in row-major order in ths
storage area labelled C. To convert the progran to
multiply square N X N matrices, it 1is necessary only to
increase the storage areas A, B, and C to accommolate
N squared words each, and to change the constant N4 to

contaim 4 * N,

* REG. 0 WILL CONTAIN 4 * N
* REG. 1 WILL CONTAIN 4 * I
* REG., 2 WILL CONTAIN 4 * J
REG. 3 WILL CONTAIN 4 ¥ K

* REG., 12 WILL CONTAIN &4

&

A DS U4F
B DS UF
C DS UF

NG DC Fo8¢

- 163 -

LA 12,4 PUT 4 IN R12

L 0,NU -PUT 4%N IN RO

LR 1,12 SET I=1 (4xI=y)
ILOOP LR 2,12 SET J=1 (4*J=4)

JLOOP LR 5,1

MR 4,0

AR 5,2 R5 NOW CONTAINS DISPLACEMENT (I, J)
SR 10,10 ZERO R10

LR 3,12 SET K=1 (4*K=8)

KLOOP LR 7,1

MR 6,0

AR 7,3 B7 NOW CONTAINS DISPLACEHENT (I,K)
LR 9,3

MR 8,0

AR 9,2 R9 NOW CONTAINS DISPLACEMENT (K, J)
LE 11,4(7) LOAD A (I,K) INTD R11

ME 11,B(9) MULTIPLY A(I,K) * B(K,J)

AER 10,11 ADD PRODUCT TO R10

AR 3,12 INCREMENT K

crR 3,0 IF K <= N,

BC 12,KL0OP GO TO KLOOP

ST 10,C(5) STORE R10 INTO C(I,J)

AR 1,12 INCREMENT J

CR 2,0 IF J <= N,

BC 12,JL00P GO TO JLOOP

AR 1,12 INCREMENT I

cCR 1,0 IF I <= N,

BC 1,ILOOD GO TO ILOOP

- 164 -~

APPENDIX D

SAMPLE MATRIX MULTIPLICATION PROGRAM

The following SANPLE program multiplies together two
square matrices A and B and leaves the product matrix in C,
The program is applicable without modification to square

matrices of any size.

BEGIN
L € LAST A;
I €« <0 TO L>;
J € <0 TO LD>;
K ¢ <0 TO L>;
T ¢ *'I* OF LY *J* OF L § *K* OF L &
Ay "I' § 'J° % B Y KT Y 'J%;
CJ "I* OF L J "JY OF L & + T Y "I' Y 'J';

END.

M

{2)

(3)

(H)

(5)

(6)

N

- 165 -

LIST OF REFERENCES

Adams, D. A. A Computation Model With Data Flow

Sequencing. Computer Science Department Report

C5-117, stanford University, Stanford, California
{Dec. 1968).

Anderson, D. W., Sparacio, F. J., and Tomasulo, R. H.
The IBN System/360 Model 91: Machine Philosophy and

Instruction-Handling. IBM J. of R. & D., 11, 1

{Jan. 1967) 8-24.
Anderson, J. P. Program Structures for Parallel
Processing. Comm. ACHM, 8, 12 (Dec. 1965) 786~788.

Baer, J. L. Graph Models of Computation in

computer Systems. Report 68-46, Department of

Engineering, UCLA, Los Angeles, Calif. (Oct. 1368).
Barnes, G. H. , Brown, R. M., Kato, M., Kuck, D. J.,
Slotnick, D. L., and Stokes, R. A. The ILLIAC 1V

Computer. IEEE Trans. on Computers, C-17, 8

{Aug. 1968) 746-757.
Bernstein, A. J. BAnalysis of Programs for

Parallel Processing. IEEE _Trans. on Electronic

Computers, EC-15 (October 1966) 757-763.
Bingham, H. W., Fisher, D. A., and Reigel, E. W.

Automatic Detection of Parallelism in Computer

Programs. Burroughs Corp. Technical Report TR-67-4

{(Nov. 1967).

- 166 =

-~

{(8) Bredt, T. H. and McCluskey, E. J. A Model for

Parallel Computer Systems. Technical Report

No. 5, SEL Digital Systems Laboratory, Stanford
University, Stanford, California (April 1970).

{9) Bredt, T. H. Analysis of Parallel Systeuns,

Technical Report No. 7, SEL Digital Systenms
Laboratory, Stanford University, Stanford,
California (August 1970).

{10} Bredt, T. H. A Survey of Models for Parallel

Computing. Technical Report No. 8, SEL Digital
Systems Laboratory, Stanford University, Stanford,
California (August 1970).

{11} Constantine, L. L. Control of Sequence and

Parallelism in Modular Programs. Proc. 1968 SJCC,

409-414,

{12} Control Data 7600 Computer System, Preliminary

Reference Manual. Pub. Ro. 60258200, Control Data

Corp., St. Paul, Minnesota (1968).,
(13) Convay, M. E. A HNultiprpcessor System Design.

Proc. 1963 FJCC, 139-1l6,

(14) Crane, B. 4., and Githens, J. A. Bulk Processing

in Distributed Logic Memory. IEEE Trans. on

Electronic Computers, EC-14, 2 (Apr. 1965) 186-196.
{(15) Dennis, J. B., and Van Hormn, E. C. Programming
Semantics for Multiprogrammed Computations.

Comm. ACM, 9,3 (March 1966) 143-155.

- 167 -

(16) Estrin, G., Bussell, B., Turn, R., and Bibb, J.
Parallel Processing in a Restructurable Coaputer

System, IEEE Trans. on Electronic Computers,

EC-12, (1963) 7Tu7-755.

(17) Floyd, R. W. ‘Bounded Context Syntactic Analysis.
coum. ACHM, 7,2 (Feb. 1364) 62-66.

(18) Gosden, J. A. Explicit Parallel Processing

Description and Control. 2Proc. 1966 FJCC,

{19) Hakermann, A. N. Prevention of System Deadlocks.
Comm. ACM, 12,7 (July 1969) 373-385.
(20) Hellerman, H. Parallel Processing of Algebraic

Expressions., IEEE Trans. on Electronic Conmputers,

EC~15 ({Feb. 1966) 82-91.
{21) Holland, J. H. A Universal Conmputer Capable of
Executing an Arbitrary Number of Sub-programs

Simultaneously. Proc. 1959 EJCC, 108-113.

{22) 1IBM System/360 Component Descriptions--2314 Direct

Access Storage Facility and 2844 Auxiliary Storage

Control (IBM Publication No. A26~3599-2) pp.26-28.

(23) IBM System/360 Disk and Tape Operating Systenrs

Assenbler Language (IBM Publication No.

C24-3414-5) (January 1968).

{24) 1IBM System/360 Operating System PL/I (F) Language

Reference Manual (IBM Publication No. C28-8201-2)
{Octoher 1969).

(25) IBM System/360 Principles of Operation (IBM

publication No. A22-6821-2) (February 1966)

- 168 -

{26) Iverson, K. A_Programming language. {Yewu fork:
John Wiley, 1962).

(27) Karp, R. M., and Miller, R. E. Properties of a
Model for Parallel Computations: Determinacy,

Termination, and Queueing. SIAM J. Appl. Math., 14

{Nov. 1966} 1390~-1411,
(28) Hartin, D. and Estrin, G. Models of Computational
Systems--Cyclic to Acyclic Graph Transformations.

IEEE Trans. on Electronic Computers, EC-16

(Feb. 1967).

{29) McKeenan, W. M. An Approach to Computer Language

Desigqn. PhD Thesis, Computer Science Departnment,
Stanford University {(Aug. 1966).
{30} McKeeman, W. WM., Horning, J. J., and Wortman, D. B.

A Compiler Generator. {Prentice-iall, 1970).

(31) Opler, A. Procedure-Oriented Language ‘Statements
to Facilitate Parallel Processing. Comm. ACM, 8, 5
{May 1965) 306-307.

(32) Rodriguez, J. E. A _Graph Model for Parallel

Compytations. PhD Thesis, MIT, Department of
Electric Engineering, Cambridge, Massachusetts
" {Sept. 1967).

(33). -Slotnick, D. L., Borck, W. C., and McReynolds, R. C.

The SOLOMON Computer. _Proc. 1962 FJCC, 97-107.
{34) Stone, H. S. One-Pass Ccmpilation of Arithmetic
Expressions for a Parallel Processor. Conm, ACM,

10,4 (April 1967) 220-223.

(35)

(36)

(37)

- 169 -

Tesler, L. G., and Enea, H. J. A Language Design
for Concurrent Processes. Proc. 1868 SJCC, 403-403.

Wilkins, S. Representations of Process

Parallelisms. Report No. 328, Department of
Computer Science, University of Illinois, Urbana,
Illinois. (June 1989 .

Wirth, N. A Note on 'Progranm Structures for

Parallel Processing®. Comm, ACM, 9,5 (May 1966)
320-321.

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

- ORIGINATING ACTIVITY (Corporate author)

28, REPORT SECURITY CLASSIFICATION
Unclassified

Digital Systems Laboratory 2b. sRoUP

. REPORTYT TITLE

PARALLEL IMPLEMENTATION OF A SINGLE ASSIGNMENT LANGUAGE

- DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report no. 13 January 1971

- AUTHORIS) (First name, middle initial, last name)

Donald D. Chamberlin

. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

Jamuary 1971

178 37

8ga.

CONTRACT OR GRANT N

N-000L4-67-A-0112_00kk (JISEP)

9a. ORIGINATOR'S REPORT NUMBER(S)

. o NGR-Q5r020-337 (NASA) SEL-T71-007

7101 (JSEP)

7111 (NASA) 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

. DISTRIBUTION STATEMENT Y

This document has been approved for public release and salej its distribution
is unlimited.

- SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Joint Services Electronics Program;
U.S. Army, U.S. Navy, and U.S. Air Force

13.

ABSTRACT This thesis describes a high-level computer programming language,

called SAMPLE, and a parallel processing system to implement the language.
SAMPLE belongs to the class of single-assignment languages, which have the
property that statements are not necessarily executed in their order of appear-
ance in the program; rather, each statement is triggered by the readiness of
the data on which it depends. Because of this property, single-assignment
languages are well adapted for parallel processing.

Rules are given for compiling SAMPLE programs into machine-level
instructions, and a machine organization is described to execute the resulting
code. During execution of a program, many processors are active simultaneously,
each with its own independent instruction stream. Expandability and graceful
degradation are intrinsic properties of the system organization.

Some experiments are described which simulate the behavior of the
proposed system and compare it with a conventional, single-processor system.
It is concluded that the proposed system offers a speed advantage over a
conventional system, at the expense of increased processor costs and memory
requirements.

DD &V..1473

Unclassified
Security Classification

Unclassified

Security Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE wWT

ROLE wWT

parallel computers
multiprocessing
single-assignment language

computer organization

Security Classification

